
Jarol - A Java Control Infrastructure

Magisterarbeit zur Erlangung des akademischen Grades
Diplom-Ingenieur der Angewandten Informatik

Angefertigt am
Institut für Computerwissenschaften und Systemanalyse

der Naturwissenschaftlichen Fakultät
der Paris-Londron-Universität Salzburg

Eingereicht von
Bernhard Kast, Bakk.techn.

Eingereicht bei
Univ. Prof. Dr. Ing. Dipl. Inform. Christoph Kirsch

for my family - Gertrude, Siegfried1, Barbara and Waltfried2.

für meine Familie - Gertrude, Siegfried1, Barbara und Waltfried2.

1+1992
2+2002

Abstract

We present Jarol, a control infrastructure written entirely in Java. It provides devel-
opers of control systems with facilities to abstract away hardware details and use of
different language-supported concurrency models. Using Java, the development of the
control code is supported by strong typing, language-based concurrency support, and
dynamic memory management. To ensure the interfacing with different platforms and
concurrency models, we derived the specific interface requirements of such platforms
and models. This allows the explicit elaboration of the data and control flow at the
interfaces, where platform is defined as a hardware configuration together with a real-
time operating system. We show that Jarol is capable of interfacing different platforms
together with different concurrency models for execution of control code. As platforms
we used a model helicopter and a model submarine, for the concurrency models we
used Java threads and Exotasks [27].

Contents

1 Introduction 6
1.1 Outline of the Thesis . 8
1.2 Main Contributions . 8
1.3 Definitions of Terms . 9

2 Platforms 11
2.1 Helicopter - The JAviator Project . 11

2.1.1 Hardware Platform . 12
2.1.2 Software Platform . 18

2.2 Submarine - The Seascout Project . 21
2.2.1 Hardware Platform . 23
2.2.2 Software Platform . 24

2.3 Summary . 27
2.4 Challenge Definition . 27
2.5 Proposed Solution . 28

3 Concurrency Models 29
3.1 Data Flow and Control Flow - Communication and Synchronization . . 29
3.2 Java Threads and Exotasks . 30
3.3 Java Threads . 30

3.3.1 Definitions . 30
3.3.2 General . 30
3.3.3 Synchronization and Communication with Monitors 31
3.3.4 Nondeterministic Thread Behavior 32
3.3.5 Platform Independence . 32
3.3.6 Thread States . 32
3.3.7 Summary . 33

3.4 Exotasks . 34
3.4.1 Isolation . 35
3.4.2 An Exotask Program . 35
3.4.3 Extending the Exotask Graph 37
3.4.4 Programming with Exotasks . 37
3.4.5 Summary . 39

3.5 Towards a General Concurrency Interface 40

1

Jarol - Java Control Infrastructure CONTENTS

4 Design 41
4.1 System Structure . 41

4.1.1 External System . 41
4.1.2 Jarol Interface Ring . 44
4.1.3 The Jarol Adaptation Layer . 44
4.1.4 Jarol Core . 45

4.2 Concepts . 45
4.2.1 Thread . 45
4.2.2 Signals . 45
4.2.3 Ports . 46
4.2.4 Time Triggers . 48
4.2.5 Links . 49
4.2.6 Jarol Messages . 51
4.2.7 Message System . 52

4.3 Formal Definitions of the Layers . 52
4.3.1 External System . 52
4.3.2 Jarol Interface Ring . 52
4.3.3 Jarol Adaptation Layer . 53
4.3.4 Jarol Core . 53

5 Implementation 54
5.1 Package: jarol . 54

5.1.1 ActuatorInterface . 55
5.1.2 JarolCoreInterface . 56
5.1.3 MessageInterface . 56
5.1.4 NavigationInterface . 57
5.1.5 SensorInterface . 57
5.1.6 TerminalInterface . 58
5.1.7 TimeTriggerInterface . 58
5.1.8 JarolCore . 58
5.1.9 JarolCoreWithLink . 58
5.1.10 Signal . 59
5.1.11 Port . 60
5.1.12 PortEnhanced . 61
5.1.13 TimeTrigger . 64

5.2 Package: jarol.messages . 65
5.2.1 Link . 66
5.2.2 MessageFactory . 66

5.3 Package: jarol.exceptions . 67

6 Application 68
6.1 The Jarol JAviator . 68

6.1.1 Structure . 68
6.1.2 Jarol Adaptation Layer . 70
6.1.3 Jarol Core . 71

6.2 The Jarol LAUV . 72
6.2.1 Structure . 72

Control 2 Bernhard Kast

Jarol - Java Control Infrastructure CONTENTS

6.2.2 Messages . 72
6.2.3 Jarol Adaptation Layer . 73
6.2.4 Jarol Core . 74

6.3 The ExoLAUV . 75
6.3.1 Structure . 75
6.3.2 Jarol Distributer . 75
6.3.3 Jarol Core - ExoLAUVController 76

6.4 Summary . 77

7 Conclusions 78

Control 3 Bernhard Kast

List of Figures

2.1 JAviator V1 . 12
2.2 JAviator Communications . 13
2.3 Robostix mounted on Gumstix. 14
2.4 Gumstix on the Top, Robostix at the Bottom. 15
2.5 Gumstix at the Bottom, Robostix on the Top. 15
2.6 The Gyroscope strained in the Top of the Inner Section. 16
2.7 The Sonar mounted on one of the Arms, pointing towards the Ground. 17
2.8 The Jeti Spin Controller (light-blue) on the Side of the Inner Section. . 19
2.9 JAviator Control Terminal . 20
2.10 LAUV in the Laboratory. 21
2.11 LAUV 3-D View . 22
2.12 DUNE . 25
2.13 Neptus Seascout Edition . 26

3.1 The Exotask Graph of the ExoLAUV. 37
3.2 Exotask Abstraction Levels . 38
3.3 Exotask Channel . 38

4.1 Jarol System Structure . 42
4.2 Two Jarol Systems exemplified. 43
4.3 Message Conversion . 44
4.4 Symbol for Thread. 45
4.5 Symbol for Signals. 45
4.6 Two Threads synchronizing via a Signal. 47
4.7 Symbol for Port. 47
4.8 Two Threads using a Port. 48
4.9 Symbol for Time Trigger. 49
4.10 The Composition and Interaction of a Time Trigger with a Thread. . . 50
4.11 Symbol for Link. 50
4.12 Link Composition . 51

5.1 Source code for signal(). 60
5.2 Source code for await(). 61

6.1 Jarol JAviator . 69
6.2 Jarol LAUV . 73
6.3 ExoLAUV . 76

4

Personal Statement

This thesis marks the end of my education as computer scientist for now. I really en-
joyed the research that lead to this thesis, and the work in the Computational Systems
Group and its collaborating students and researchers. Farewell, I will carry on the
work ethic and team spirit that guided me through the last months.

I want to thank Christoph for his advising, guidance, support and his commitment
to science, students and the university. Rainer for his explanations of the JAviator,
answering my questions and supporting me with my thesis. I am also grateful to
Eduardo for his help with the implementation, design, thesis and various discussions.
Harald for his immediate explanations of my questions, especially with the Gumstixs
and Exotasks. I want to thank Ana for proof reading and useful tips. Ricardo for
providing vital information on the Seascout and waving the flag of Heavy Metal high!
Thanks to Josh for his help on the Exotasks. Silviu, Robert, Hannes, Horst and Leo
for various discussions and conversations.
Outside the group I want to thank Thomas for rocking the world with me since the
dark ages. And of course, Josef for numerous discussions about communications, social
dynamics and leadership, resulting in a vast improvement of my well-being and thus
scientific output.
My deepest thanks go to my mother and my sister who supported me my whole life
and especially during my studies. I also want to thank those who can not see this day,
my father and Waltfried.

I wish you all the best and that you live your dreams...

because we can!

Europe, 11th May 2007

Chapter 1

Introduction

In programming control systems one faces the challenge that platforms (“platform”
stands for “a hardware configuration together with a real-time operating system” [33])
traditionally only provide weak hardware abstractions and usually only support low-
level programming languages. Such languages typically lack strong typing, high-level
memory management, and provide limited language-based concurrency concepts in the
implementation. Working on such platforms entails problems for the application writer
who has to deal with the underlying hardware and restrictions imposed by low-level
abstractions.

Our work is aimed at providing hardware abstractions and high-level programming
concepts in this process. For this purpose, we propose an infrastructure called Jarol
that provides facilities to abstract away hardware details and allow the use of different
language-supported concurrency models. Furthermore, this infrastructure is written
in the high-level programming language Java that enables strong typing, language
based concurrency support, and dynamic memory management. We have chosen Java,
because it offers all these features. Moreover, considering recent developments like
Exotasks [28] [27], we claim that Java will eventually become real-time.

To ensure the interfacing with different platforms and concurrency models, we de-
rived the specific interface requirements of such platforms and models, hence allowing
the explicit elaboration of the data and control flow at the interfaces. Therefore, we
designed ports (data) and signals (control), where ports are directed data exchange
points, whereas signals are synchronization points. Ports allow the communication
between two threads using a non-blocking lock-free message passing scheme. Signals
allow threads to synchronize by waiting and signaling each other, using strict semantics.
This means that any operation on a signal either succeeds or generates an exception,
thus preventing silent failures.

6

Jarol - Java Control Infrastructure

Jarol concepts allow to interface different concurrency models and to provide the ab-
straction of the hardware. This permits the developer to

(1) focus on the implementation of the control code,

(2) use the benefits of Java,

(3) utilize the features of different concurrency models, and

(4) take the initial step to migrate the whole software architecture to Java.

The structure of the thesis is as follows. First we examine the platforms to derive
the necessary requirements for interfacing with different platforms. This examination
describes the JAviator and Seascout project (Chapter 2). We proceed with an analysis
of Java threads and Exotasks to gather information needed to create an interface that
incorporates the requirements of platforms and concurrency models (Chapter 3). In
Chapter 4 we describe the abstract design of the core concepts we derived to fulfill these
requirements. This includes the layering of the Jarol infrastructure and the description
of signals, ports, links, and other concepts. We give an overview and discussion of the
resulting Java implementation in Chapter 5. In Chapter 6 we show the application of
the infrastructure with different platforms and concurrency models. This includes the
discussion of the Jarol JAviator and Jarol LAUV that both use Java threads. Finally,
we present the ExoLAUV which uses Exotasks to execute the control code. In the
conclusions we summarize this thesis (Chapter 7).

Control 7 Bernhard Kast

Jarol - Java Control Infrastructure 1.1. OUTLINE OF THE THESIS

1.1 Outline of the Thesis

Chapter 1, Introduction: The introduction gives an outline of this thesis and its
terms.

Chapter 2, Platforms: In this chapter we give an overview about the used plat-
forms. We introduce the hardware and software platforms of the projects. We summa-
rize the key disparities, from which we derive the challenge definition and the proposed
solution.

Chapter 3, Concurrency Models: The concurrency models that are interfaced
with Jarol are presented in Chapter 3. We describe the benefits and drawbacks of Java
threads and Exotasks. This allows us to adapt the proposed solution to the needs of
the different concurrency models.

Chapter 4, Design: In Chapter 4 we present the concepts that we derived to meet
the challenge of designing a general platform and concurrency interface.

Chapter 5, Implementation: The implementation of the concepts in Java is the
content of the Chapter 5. It gives an overview about the Jarol infrastructure and
discusses the major algorithms.

Chapter 6, Application: We give a presentation of the Jarol application with the
JAviator and Seascout projects. Showing that it is possible to use the Jarol infrastruc-
ture with both projects and different concurrency models.

Chapter 7, Conclusions: The last chapter summarizes the contents of this thesis.

1.2 Main Contributions

My personal contributions on Jarol are the evaluation of the JAviator and Seascout
platforms, including the description of their hardware and software architecture. Based
on this information, I derived the requirements to interface these platforms. Further-
more, I analyzed Java threads and Exotask concurrency models to derive the interface
requirements towards a general concurrency interface. Based on the platform and con-
currency requirements, I designed the concepts that constitute Jarol. I implemented
and documented together with Eduardo Marques these concepts in Java, which re-
sulted in a release of Jarol 0.1 on Friday the 13th of April 2007.

Control 8 Bernhard Kast

Jarol - Java Control Infrastructure 1.3. DEFINITIONS OF TERMS

1.3 Definitions of Terms

General Terms

To increase readability we present the general terms that are mentioned in this thesis.

Actuator An actuator is a device that accepts data and translates it into information
that realizes an intended effect on a mechanism, like a motor.

AUV An autonomous underwater vehicle (AUV) is a vehicle with no onboard pilot
that travels under water. Usually AUVs are oceanographic tools that navigate au-
tonomously and carry various sensors for navigation and oceanographic research. [14]

ASV An autonomous surface vehicle (ASV) is a vehicle with no onboard pilot that
travels across water. ASVs are sometimes used to coordinate with AUVs [24] [31].

DUNE The DUNE Uniform Navigational Environment is a general framework for
on-board software in autonomous vehicles developed by the USTL (see below).

Exotasks “Exotasks are a novel Java programming construct that achieve determin-
istic timing, even in the presence of other Java threads, and across changes of hardware
and software platform.” [27]

Fin “A fin is a surface used to produce lift and thrust or to steer while traveling in
water, air, or other fluid media.” [15]

Gumstix A Gumstix is a small computer that is widely used in embedded devices.

Gyroscope “A gyroscope is a device for measuring or maintaining orientation, based
on the principle of conservation of angular momentum.” [16]

I2C I2C “is a multi-master serial computer bus invented by Philips that is used to
attach low-speed peripherals to a motherboard, embedded system, or cellphone. The
name stands for Inter-Integrated Circuit” [17].

Inertial Unit See IMU.

IMU “An Inertial Measurement Unit (IMU) is a closed system that is used to detect
altitude, location, and motion. Typically installed on [an] aircraft or [an] UAVs, it
normally uses a combination of accelerometers and angular rate sensors (gyroscopes)
to track how the craft is moving and where it is.” [18]

JAviator The JAviator is an UAV developed by the Computational Systems Group
at the University of Salzburg [7].

Control 9 Bernhard Kast

Jarol - Java Control Infrastructure 1.3. DEFINITIONS OF TERMS

MVS “The MVS is a multiple vehicle simulation system” [25] developed by the
USTL.

Neptus Neptus is a distributed command and control framework for operations with
vehicles, sensors and human operators developed by the USTL.

PWM Pulse width modulation (PWM) is a technique to control analog circuits with
digital outputs. [10] We call the result of this conversion PWM signals.

Quadrotor “A quadrotor, also called a quadrotor helicopter, is an aircraft that is
lifted and propelled by four rotors. Quadrotors are classified as rotorcraft, as opposed
to fixed-wing aircraft, because their lift is derived from four rotors. They can also be
classified as helicopters, though unlike standard helicopter, quadrotors are able to use
fixed-pitch blades, whose angle of attack does not vary as the blades rotate. Control
of vehicle motion can be achieved by varying the relative speed of each rotor to change
the thrust and torque produced by each.” [19]

Robostix A Robostix is a computer board based on an Atmel AVR processor - the
ATMega128 [5].

ROV A remote operated underwater vehicle (ROV) is an underwater vehicle without
an onboard pilot, but with a connection to a human operator that monitors and steers
the vehicle.

RS-232 RS-232 is a standard for transmitting serial data.

Seascout The Seascout is an AUV of the USTL. [12]

Seaware “Seaware is a middleware for network communication in dynamic and het-
erogeneous network environments, oriented to data-centric network computation.” [23]

Sensor A Sensor is a device that reads information from the environment and pro-
vides this information in form of data.

UAV “An unmanned aerial vehicle (UAV) is an aircraft with no onboard pilot. UAVs
can be remote controlled or fly autonomously based on pre-programmed flight plans
or more complex dynamic automation systems.” [20]

USTL USTL is the Underwater Systems and Technology Laboratory at the Faculty
of Engineering at Porto University (Portugal). [8]

Control 10 Bernhard Kast

Chapter 2

Platforms

In this chapter we give an overview of the two different platforms for which we want
to develop a control infrastructure. Each platform consists of a vehicle with a specific
equipment and software architecture. The first one is the JAviator, also referred to as
the helicopter, and the other one is the Seascout also referred to as LAUV.

The term control in the context of the thesis means to command, direct, or regulate a
certain component. In our case we want to control physical components of the vehicles
with software. The part of the software that does the actual control is called the control
code.

The JAviator is a project of the Computational Systems Group in the Department of
Computer Sciences at the University Salzburg (Austria). It is also the name of the
quadrotor - a helicopter with four rotors - that is the heart of the project. Seascout is a
project of the Underwater Systems and Technology Laboratory (USTL) at the Faculty
of Engineering at Porto University (Portugal). The vehicle of the Seascout project is
an autonomous submarine called LAUV or Seascout.

We discuss of the challenges that the different platforms presented to us at the end of
this chapter.

2.1 Helicopter - The JAviator Project

The JAviator [39] project deals with the research and implementation of the control
software for an unmanned aerial vehicle (UAV). The aim of the project is to implement
the software of an UAV entirely in Java. The JAviator serves as a test and research
platform for the Computational Systems Group (Salzburg) and the IBM T.J. Watson
Research Center (Hawthorne, New York) for their Exotasks system that will be ex-
plained in Chapter 3.

The JAviator was designed, built, and developed from scratch at the University of
Salzburg. The project started in Fall 2005. After initial propulsion tests in April 2006,
the first flight was also performed in April 2006. In October 2006 the first all-Java

11

Jarol - Java Control Infrastructure 2.1. HELICOPTER - THE JAVIATOR PROJECT

flight was performed during a visit of Joshua Auerbach and David Bacon from IBM.
The JAviator was flying in a rack for security reasons. A video of this event can be
found here [9].

2.1.1 Hardware Platform

The JAviator is an electric quadrotor, the rotors surround the inner section in a cross-
shaped manner, as can be seen in Figure 2.1. All components except the rotors and
motors are contained in the inner section. Rainer Trummer designed and constructed
the JAviator from carbon fiber, aircraft aluminum and titanium.

Figure 2.1: JAviator V1

Measurements The JAviator has a total diameter of 1100 mm (max diagonal over
spinning rotors). It weighs about 1.5 kilogram including the Robostix, Gumstix and
the power-supply board, which will be explained in the following sections. The frame is
built with carbon-fiber pipes, body rings, aluminum connectors, aluminum screws and
blind rivets. The rotors are constructed with aluminum, titanium and carbon fiber.
Figures 2.6 and 2.7 provide a good view on the internals and details of the JAviator.

Control 12 Bernhard Kast

Jarol - Java Control Infrastructure 2.1. HELICOPTER - THE JAVIATOR PROJECT

Propulsion We use custom-made 3-phase synchronous motors with a maximum
power of approximately 200 Watt that are controlled by Jeti Spin 22 3-phase con-
trollers. The motor-to-rotor gearing is 6:1. The four motors and other components are
powered by a Thunder Power 4-cell lithium-polymer battery with 14.8V and 6000mAh.
This allows a maximum thrust of 1000 g per rotor. The maximum payload is approx-
imately 1500 g. The JAviator should be able to lift about 0.5 kilogram and fly for
about 15 minutes.

Communication Interfaces Due to the many different hardware components we
use different kinds of communication protocols, like RS232, I2C and PWM. In Figure
2.2 the different components and their associated protocol can be seen.

Motors

RoboStix

Gyro

ControlTerminal

Sonar

JAVA

C

I2C

RS232

RS232 PWM

RS232

Sockets

Figure 2.2: JAviator Communications

Control 13 Bernhard Kast

Jarol - Java Control Infrastructure 2.1. HELICOPTER - THE JAVIATOR PROJECT

On-board Computers

Robostix - Robostix TH We use the Robostix TH to do the low-level sensing1 and
actuating2 for the JAviator. A Robostix is like a small computer without a keyboard
or monitor attached. Figure 2.3 shows the back of a Robostix that is mounted on a
Gumstix. A Robostix is a board based on an Atmel AVR processor - the ATMega128.
The board support communication via PWM, I2C, [5] etc.

Figure 2.3: Robostix mounted on Gumstix.

Gumstix We use the Gumstix connex400 as on-board computer for the JAviator.
A Gumstix is a small computer that uses Linux as operating system, but it lacks a
keyboard and monitor, hence it needs to be connected to a common computer to in-
teract with it. Gumstixs are widely used in embedded devices. The connex400 is an
Intel PXA255-driven motherboard. It has one 60 pin Hirose I/O connector and one
92-pin bus header. It runs an Intel XScale PXA255 with 400 MHz and has 16MB of
flash memory [6].

In Figure 2.2 the Gumstix executes the control code. The current configuration can
be seen in Figure 2.4 and 2.5.

Sensors

Sensors are devices that provide information on the environment, this information can
be used for various purposes. In the context of control the interest lies in sensor data

1Sensing is the activity of acquiring data from sensors.
2Actuating is the activity of sending data to actuators.

Control 14 Bernhard Kast

Jarol - Java Control Infrastructure 2.1. HELICOPTER - THE JAVIATOR PROJECT

Figure 2.4: Gumstix on the Top, Robostix at the Bottom.

Figure 2.5: Gumstix at the Bottom, Robostix on the Top.

Control 15 Bernhard Kast

Jarol - Java Control Infrastructure 2.1. HELICOPTER - THE JAVIATOR PROJECT

that provides information on the physical state of the vehicle, e.g., altitude, speed,
pitch, yaw, roll, etc.

Microstrain 3DM-GX1 We use a Microstrain 3DM-GX1 3-axis gyro-stabilized in-
ertial measurement unit as gyroscope for the JAviator. It is mounted at the top of the
inner section of the JAviator, as can be seen in Figure 2.6. The “3DM-GX1 combines
three angular rate gyros with three orthogonal DC accelerometers, three orthogonal
magnetometers, multiplexer, 16 bit A/D converter, and embedded microcontroller, to
output its orientation in dynamic and static environments.” [13]

Figure 2.6: The Gyroscope strained in the Top of the Inner Section.

Devantech SRF10 For determining the altitude of the JAviator we use the Devan-
tech SRF10 ultrasonic distance sensor. The sensor is able to determine ranges between

Control 16 Bernhard Kast

Jarol - Java Control Infrastructure 2.1. HELICOPTER - THE JAVIATOR PROJECT

6 cm and 600 cm. It communicates via a standard I2C bus [4]. On each arm of the
JAviator resides a sonar that is pointing toward the ground, as can be seen in Figure
2.7. Note that the two small cylinders on the green board are the sonar sensors.

Figure 2.7: The Sonar mounted on one of the Arms, pointing towards the Ground.

Actuators

Actuators are used for actuation, this is the translation from digital output of com-
puters - in this case the Robostix - to an analog or other kind of signals for motors,
servos, or other devices.

Jeti Spin 22 3-phase controllers We use four Jeti Spin 22 3-phase controllers,
that convert the PWM signals from the Robostix into motor signals. It runs at 14

Control 17 Bernhard Kast

Jarol - Java Control Infrastructure 2.1. HELICOPTER - THE JAVIATOR PROJECT

kHz and converts the DC to AC. Each controller is located in the inner section of the
JAviator (see Figure 2.8) next to the arm of the assigned motor.

2.1.2 Software Platform

The JAviator control software is implemented in Java, whereas the low-level code like
drivers are implemented in C. As can be seen in Figure 2.2 the control code and the
terminal are implemented in Java. The software on the Robostix is implemented in
C. It provides an interface for the low-level components that performs a timed sensing
and actuating. This allows the JAviator team to implement as much as possible in Java.

Java Control Code

There are two different approaches for the implementation of the control code in the
JAviator project. One solution is with ordinary Java threads, the other one uses the
Exotasks [27] system from IBM. In Chapter 3, we provide an introduction to Java
threads and Exotasks. In order to speed up the development process, large parts of
the control code were used for both systems. Since Java threads and Exotasks follow
different guidelines the source code is unstructured and hard to read, which decreases
code maintainability and the overall understanding of the system.

JAviator Control Terminal

The JAviator Control Terminal is a Java application that allows to monitor, set thresh-
olds and steer the JAviator from a computer that is connected to the JAviator via a
RS232 interface or socket connection.

The user is able to monitor the motor signals, the signal offsets, the alignment, roll,
pitch, yaw and the altitude of the helicopter. To enhance security the user can set the
limits for roll, pitch, yaw and altitude, as can be seen in Figure 2.9. If these limits
are exceeded the terminal sends a shutdown message to the JAviator to initiate a safe
hard-coded landing procedure that resides on the Robostix. The user can steer the
JAviator with a keyboard or a joystick.

MockJAviator

The MockJAviator simulates the physical behavior of the JAviator. It enables veri-
fying control code and testing without using the helicopter. It was written by Rajan
Vadakkedathu of IBM.

The MockJAviator can be connected to the JAviator Control Terminal via sockets. It
provides sensor data and reacts to the actuator data sent to it, thus allowing the user to
verify the reactions on the Control Terminal. Sockets are used for the communication
between the MockJAviator and the Control Terminal.

Control 18 Bernhard Kast

Jarol - Java Control Infrastructure 2.1. HELICOPTER - THE JAVIATOR PROJECT

Figure 2.8: The Jeti Spin Controller (light-blue) on the Side of the Inner Section.

Control 19 Bernhard Kast

Jarol - Java Control Infrastructure 2.1. HELICOPTER - THE JAVIATOR PROJECT

Figure 2.9: JAviator Control Terminal

Control 20 Bernhard Kast

Jarol - Java Control Infrastructure 2.2. SUBMARINE - THE SEASCOUT PROJECT

2.2 Submarine - The Seascout Project

The Seascout is an underwater vehicle system that consists of an autonomous under-
water vehicle3 (AUV) named “light AUV” (LAUV) or Seascout (see Figure 2.10 and
2.11), an acoustic positioning system with 2 external acoustic transponders and an
operator command and control framework called Neptus [12]. The LAUV “is a small
torpedo shaped vehicle optimized for a low cost mechanical structure.” [25]

The Seascout was built by the Underwater Systems and Technology Laboratory (USTL)
in the Faculty of Engineering at Porto University (Portugal). It was designed for coop-
eration, swarm-type mission and as a test platform for mixed-initiative concepts. The
USTL used previous submarines that were bought from external suppliers and later
modified to fulfill the needs of the USTL. The USTL looks back at about 10 years in
working with various AUVs, UAVs, ROVs and ASVs [21].

Figure 2.10: LAUV in the Laboratory.

3An AUV is a submarine without an operator, it is controlled by an autonomous navigation unit.

Control 21 Bernhard Kast

Jarol - Java Control Infrastructure 2.2. SUBMARINE - THE SEASCOUT PROJECT

Figure 2.11: LAUV 3-D View

Control 22 Bernhard Kast

Jarol - Java Control Infrastructure 2.2. SUBMARINE - THE SEASCOUT PROJECT

2.2.1 Hardware Platform

The LAUV is a low-cost submarine for environmental and oceanographic surveys. It
has an operational depth of about 50 meters and is able to operate for 8 hours. The
hull is constructed from aluminum, whereas the tail is built with polyethylene. It can
be equipped with various sensors. The onboard computer is based on Gumstixs and is
connected to all actuators and sensors [12].

Measurements

The LAUV is torpedo-shaped, measures 108 cm in length and a diameter of 15 cm. It
weighs about 18 kilogram. The Figure 2.10 shows the LAUV without fins. In Figure
2.11 a 3-dimensional representation of the complete LAUV can be seen.

Propulsion

The propulsion is provided by one electrically driven propeller. The expected maximum
velocity is 2 m/s [25]. A Mclennan BLDC58-50LMK2 brushless motor with integrated
drive electronics is used it provides “up to 50 watts continuous output power and
variable speed proportional” [1]. It is operating at speeds from 100 to 3000 RPM.
Depending on the configuration 3 or 4 fins are used to maneuver the submarine.

On-board Computer

T3SX Stack The T3SX stack is the core of LAUV and consists of various compo-
nents. Note that we explain the important ones in more detail below.

Overview of T3SX stack components:

• Gumstix - Connex 400xm (GS400J-XM)

• Gumstix - Robostix-TH (BRD00019-TH)

• Gumstix - netCF (BRD00035)

• Kingston - Compact Flash Card PRO 1Gb HighSpeed

• 4 leak sensors

• 4 temperature sensors

• 2 Voltage monitor

• 2 Amperage monitor

• 5 signal relays

• 1 RPM monitor

• 2 buffered and pre-processed RS232 serial ports

Control 23 Bernhard Kast

Jarol - Java Control Infrastructure 2.2. SUBMARINE - THE SEASCOUT PROJECT

• 2 RS232 serial ports

• 1 Thruster controller (i2c interface)

• 4 PWM outputs (for tail servos control)

• 1 Stepper interface

Robostix - Robostix-TH The LAUV uses the same Robostix as the JAviator.

Microstrain 3DM-GX1 The LAUV uses the same gyroscope as the JAviator.

Gumstix The Gumstix is the same model as in the JAviator and it is mounted on
the T3SX [25].

Sensors

The LAUV can be equipped with various kinds of sensors, we explain only those that
are important from the control perspective.

CTD Sensor CTD is the abbreviation for conductivity, temperature and depth. A
CTD sensor provides important data on the depth of the submarine. The LAUV uses
a Glomo SW100 OEM. For further information see the specifications here [3].

Actuators

Actuators are used for actuation, this is the translation from digital output of com-
puters - in this case the Robostix - to an analog or other kind of signals for motors,
servos, or other devices.

Servos The LAUV uses Futaba S3003 servos to control the fins.

Thruster Controller The BLDC 58 brushless motor has integrated drive electron-
ics. It provides up to 50 watts of “continuous output power and a variable speed
proportional to a 0-5 V control signal” [2].

2.2.2 Software Platform

The Seascout resides on a vast software architecture that was developed and maintained
over the years at the USTL. This architecture provides support for various aerial and
nautical vehicles. The low-level part of the architecture is provided by the DUNE
Uniform Navigational Environment (DUNE). It interacts with Seaware that is used
for the communication between numerous vehicles and multiple operators. Operators
work on Neptus terminals, which are used for mission planing, monitoring and steering
the vehicles.

Control 24 Bernhard Kast

Jarol - Java Control Infrastructure 2.2. SUBMARINE - THE SEASCOUT PROJECT

DUNE - DUNE Uniform Navigational Environment

DUNE is a general framework for on-board software in autonomous vehicles. It pro-
vides a platform abstraction layer in C++ to allow portability for different computer
architectures and operating systems, thus it is used to abstract away the hardware
details of the LAUV. Figure 2.12 gives a good impression of the layers in DUNE.
Additionally it provides facilities for low-level communication with sensors, actuators,
navigation, guidance, maneuver and mission control. DUNE supports multiple Op-
erating Systems (Linux, QNX, ...) and target architectures (Gumstix, PC104,...). It
allows the control of different vehicles (ROVs, AUVs, ASVs, ...). Additionally, it in-
cludes a large amount of drivers for heterogeneous hardware, like CAN, GPS, IMU,
I2C sensors, etc [12] [25] [24].

DUNE is multithreaded (one thread per task) and uses a lock-free message bus. Related
logical operations are divided into isolated sets called tasks. Tasks can be attached
and detached by name at any time [12] [25] [24]. “Tasks are executed in a concurrent
or serialized fashion and may also be grouped into single concurrent or serialized exe-
cution entities.” [25]

Figure 2.12: DUNE

The LAUV Simulator

The LAUV simulator is called multiple vehicle simulation system (MVS) [25] devel-
oped by the USTL. The simulator runs as a periodic DUNE task, where it replaces the
sensors and actuators.

The simulation omits any collision detection and is limited to one vehicle. When the
simulation is initiated the dynamic world is created with global properties like gravity,
also obstacles and boundaries are added. The vehicle with its initial state is defined.
After the initialization a loop is started that runs until termination of the simulation,
it performs the following three steps:

(1) Apply forces to the vehicle.

Control 25 Bernhard Kast

Jarol - Java Control Infrastructure 2.2. SUBMARINE - THE SEASCOUT PROJECT

(2) Take simulation step.

(3) Read the vehicle’s position, orientation and velocity.

Neptus - Seascout Edition

Neptus [22] is a distributed command and control framework for operations between
vehicles, sensors and human operators. The USTL provided us with a Neptus appli-
cation for the Seascout: “Neptus - Seascout Edition”.
The Neptus framework provides applications for world representation and modeling,
planning, simulation, execution control, and post-mission analysis. It uses XML for
data representation and XLST generators to translate XML into the appropriate ve-
hicle language [22]. Neptus uses the Seaware middleware to communicate with the
attached vehicles [23].

The Neptus Seascout Edition allows the user to control the submarine via keyboard
or joystick. It provides a 3-dimensional view of the mission area, various sensor data,
and control information as can be seen in Figure 2.13.

Figure 2.13: Neptus Seascout Edition

Control 26 Bernhard Kast

Jarol - Java Control Infrastructure 2.3. SUMMARY

2.3 Summary

We discussed the JAviator and Seascout platforms on which we want to apply our
control infrastructure. On the hardware side we have a strong disparity between the
two projects: not only that we consider an aerial versus an underwater vehicle, there
are also many differences in the experience of both groups in dealing with vehicle plat-
forms. This is similar on the software side. The software of the JAviator project was
developed from scratch, in contrast to the Seascout project that relies on a vast amount
of existing infrastructures and tools.

The differences helped us to see the benefits and drawbacks of the different approaches.
We also profited from the exchange of experience, especially in those areas where we
use a common architecture like the Gumstix, Robostix, and the gyroscope.

The aim of the Jarol project lies in providing an infrastructure for developing control
code in a more convenient way. We are interested in creating an interface that offers
an abstraction that hides all the aspects unnecessary for control.

2.4 Challenge Definition

In order to define the challenge we need to take a look at the initial situation.

Deriving from the evaluation of the hardware and software platforms, we have:

• Two heterogeneous vehicles that use different hardware and software platforms.

• Two different concurrency systems in the JAviator.

The challenge is to deal with heterogeneous platforms and different concurrency mod-
els. Therefore, we need to derive platform and concurrency interfaces that allow the
implementation of control code in Java. We are interested in:

• Developing control code for both vehicles in Java.

• Using different concurrency systems for the execution of the control code.

• Migrating more source code from low-level languages to Java.

Control 27 Bernhard Kast

Jarol - Java Control Infrastructure 2.5. PROPOSED SOLUTION

2.5 Proposed Solution

Examining the challenge definition, we propose the development of an infrastructure
that provides:

• Abstraction of the hardware details of the platform.

• Abstraction of the software details of the platform.

• Explicit data flow at the interfaces - to allow the use of different concurrency
models and generic programming.

• Explicit control flow at the interfaces - to allow the use of different concurrency
models and provide support for deterministic implementations.

The abstraction of the underlying hardware and software is realized by defining a mes-
sage set that is derived from the existing projects and converted into Jarol compatbile
objects. This enables extracting the data and control flow information from the mes-
sages in order to perform and synchronize the computation of the control code.

Control 28 Bernhard Kast

Chapter 3

Concurrency Models

Providing an interface to different concurrency models is a major aspect of Jarol. It is
needed to enable the developer the use of Java threads or Exotasks for the execution
of the control code. Hence the developer can choose the model most appropriate for
his project.

3.1 Data Flow and Control Flow - Communication

and Synchronization

In a concurrent program we have a data and a control flow. The data flow contains all
the necessary data that is used by the program to fulfill its goal. It is needed for what
the program does. The control flow is all the information that is needed to coordinate
the program internally. It reflects how parts of the program are interacting with each
other.

We will introduce the concept of process communication and synchronization and their
relation to the data and control flow. The data flow relies mainly on communication,
whereas the control flow relies mainly on synchronization.

Synchronization is the coordination of different threads within the system. “In its
widest sense, synchronization is the satisfaction of constraints on the interleaving of
the actions of different processes” [30]. Communication refers to exchanging data
between different threads. “Communication is the passing of information from one
process to another.” [30]

Data flow and control flow are two separated concepts, but on the implementation level
they are typically not separated from each other. The literature notes that the “two
concepts [synchronization/communication] are linked, since some forms of communi-
cation require synchronization, and synchronization can be considered as contentless
communication” [30].

Synchronization and communication are either realized with shared variables or mes-
sage passing. Shared variables is a concept that implies that more than one process

29

Jarol - Java Control Infrastructure 3.2. JAVA THREADS AND EXOTASKS

has access to a certain object. Message passing is the explicit exchange of data in form
of a message that is passed between two processes [30].

3.2 Java Threads and Exotasks

We are interested in deriving the requirements for using different concurrency mod-
els for the execution of the control code. Therefore we investigate the concurrency
models that are used in the JAviator project. These are standard Java threads and
Exotasks [27]. Using the requirements for both systems, we are able to create a con-
currency interface that allows us to interact with both systems.

Java threads are a general concept in contrast to Exotasks, which have a specific
purpose. Java threads are used to provide concurrent execution of different threads,
whereas Exotasks are a programming model for the development of real-time systems.
Therefore the restrictions, requirements and features are quite different. In communi-
cation and synchronization, Java threads use the shared variables approach, whereas
Exotasks follow a message passing scheme.

3.3 Java Threads

Java threads allow the developer to execute different threads of execution in one pro-
gram. Threads in Java are a base concept of the language [40]. This section gives an
overview about Java threads, their features and limitations.

3.3.1 Definitions

We assume that the reader is familiar with the concept of threads, therefore we only
provide a short definition:
“A thread is a call sequence that executes independently of others, while at the same
time possibly sharing underlying system resources such as files, as well as accessing
other objects constructed within the same program.” [37]

3.3.2 General

“A thread is a thread of execution in a program. The Java Virtual Machine allows an
application to have multiple threads of execution running concurrently.” [11] In Java
every program consists of at least one thread. This thread runs the main method of
the class that is used as a startup argument for the Java Virtual Machine [37].

The notion thread is a shortcut of “thread of execution”. Hence a thread executes
a subset of the source code of a given program. In Java a thread is an object. Java
threads have the disadvantage that the Java policy “write once run anywhere”, usually

Control 30 Bernhard Kast

Jarol - Java Control Infrastructure 3.3. JAVA THREADS

fails for them. This is discussed further below.

3.3.3 Synchronization and Communication with Monitors

Java supports two kinds of synchronization: mutual exclusion and cooperation, both
build upon monitor semantics. Mutual exclusion is realized with object locks, whereas
cooperation is supported by the wait() and notify() primitives of monitors.
We assume that the reader knows the concept of a monitor and its associated wait set.

Mutual Exclusion “Each object in Java is associated with a monitor, which a
thread can lock or unlock. Only one thread at a time may hold a lock on a monitor.
Any other threads attempting to lock that monitor are blocked until they can obtain
a lock on that monitor.” [32]
A monitor is associated with an object and with a subset of the source code. This sub-
set is called a monitor region. In Java a monitor region is defined by a synchronized
block or a synchronized method. A monitor region is not executed atomically, but is
“executed as one indivisible operation with respect to a particular monitor” [40]. Thus
the execution of a monitor region of one monitor by a thread disallows the entering of
any monitor region of the same monitor by any other thread. “A monitor enforces this
one-thread-at-a-time execution of its monitor regions.” [40] In Java locks are owned
per thread, thus calling a monitor region from within a monitor region of the same
monitor does not block. [26]

Cooperation Java also provides cooperation with monitors. Cooperation is needed
to adjust different threads towards fulfilling a common goal. A simple example is one
thread that reads data from a buffer, whereas another thread writes data to the same
buffer. If data is written to the buffer, the writing thread should notify the reading
thread when the writing process is finished, preventing the reading thread from unnec-
essary waiting and/or polling on the buffer.

In Java cooperation is bound to monitors, because the primitives wait() and notify()

can only be called from a thread that is inside a monitor. When a wait() is called, the
calling thread is suspended. This means that the thread stops its execution and enters
the wait set. The thread is suspended (waiting) until another thread inside the same
monitor calls a notify(). After the call of notify() the calling thread still keeps the
monitor until it either calls a wait() or leaves the monitor by completing the execution
of the monitor region. Then the waiting thread is awakened and continues after the
wait() call [40].
Note that “a thread can only execute a wait command if it currently owns the monitor,
and it can’t leave the wait set without automatically becoming again the owner of the
monitor.” [40]

Control 31 Bernhard Kast

Jarol - Java Control Infrastructure 3.3. JAVA THREADS

3.3.4 Nondeterministic Thread Behavior

In this section we will take a look at the thread behavior that is guaranteed by the Java
Language Specification (JLS). We explain which aspects of the JLS cause problems for
the development of multi-threaded applications in Java. Additionally, we address the
main issues, related to platform-independent and deterministic behavior.

The “JSR-133: JAVATM Memory Model and Thread Specification” states:

“These semantics do not describe how a multithreaded program should be
executed. Rather, they describe the behaviors that multithreaded programs
are allowed to exhibit. Any execution strategy that generates only allowed
behaviors is an acceptable execution strategy.” [38]

The Java compiler is allowed to reorder instructions as long as “this does not a affect
the execution of that thread in isolation” [32]. To determine the legality of a thread
in execution, the implementation of a thread is evaluated as if it would be executed
as a single thread. “[I]ntra-thread semantics are what determine the execution of a
thread in isolation; when values are read from the heap, they are determined by the
memory model.” [38] However, when two threads are interacting this can result in a
wrong execution order, if the code is not properly synchronized. Reordering can have
multiple causes, the just-in-time compilation or the the processor may be the reason for
code rearrangements, additionally the memory hierarchy of the architecture on which
the virtual machine reside may make the code rearranged [32].
The “JSR-133: JAVATM Memory Model and Thread Specification” adds on this [38]:
“[T]he behavior of a correctly synchronized program is much less dependent on possible
reorderings. Without correct synchronization, very strange, confusing and counterin-
tuitive behaviors are possible.” Sounds fun.

Thus deterministic behavior and platform independence for multithreaded Java pro-
grams cannot be guaranteed.

3.3.5 Platform Independence

As already mentioned above, Java threads are not platform independent, thus com-
plicating the platform-independent development of multithreaded applications. It is
necessary to know “something” about the run-time environments to run the appli-
cations properly. This does not mean it is impossible to write platform-independent
multithreaded applications in Java, but it is challenging [34]. We need to take this into
account, when we generate facilities for synchronization and communication.

3.3.6 Thread States

A Java thread enters various states during its lifecycle. We provide a short overview
of theses states. According to the JAVA API 2 Platform Standard Edition 5.0 [11], a
thread can enter the following states:

Control 32 Bernhard Kast

Jarol - Java Control Infrastructure 3.3. JAVA THREADS

• NEW: “A thread that has not yet started is in this state.”

• RUNNABLE: “A thread executing in the Java virtual machine is in this state.”

• BLOCKED: “A thread that is blocked waiting for a monitor lock is in this state.”

• WAITING: “A thread that is waiting indefinitely for another thread to perform
a particular action is in this state.”

• TIMED WAITING: “A thread that is waiting for another thread to perform an
action for up to a specified waiting time is in this state.”

• TERMINATED: “A thread that has exited is in this state.”

3.3.7 Summary

Java threads are a general concept for concurrent programming, but they provide no
guarantee for deterministic or platform-independent behavior. The monitor semantics
do not provide the necessary strictness we need for synchronization.

To meet these challenges we propose:

1. A mechanism to transfer consistent data without locking between different threads.

2. A mechanism to allow a strict synchronization protocol for threads.

We want that all interacting threads execute in isolation with respect to each other,
in order to have sequences of threads instead of loosely-organized concurrent threads.
Enabling deterministic behavior is also one of our goals, therefore it is important that
our synchronization scheme allows us to provide a deterministic sequence of the exe-
cuted threads, e.g., a guarantee that Thread 1 is executed before Thread 2.

Control 33 Bernhard Kast

Jarol - Java Control Infrastructure 3.4. EXOTASKS

3.4 Exotasks

Exotasks are a Java programming construct that was developed by IBM in cooperation
with the Computational Systems Group at the University of Salzburg. The aim is to
combine the convenience of the Java programming language with real-time guarantees
and platform independence, thus extending the “write once run anywhere” philosophy
to real-time applications in Java. This is achieved by providing time portability and
deterministic execution behavior.

Exotasks are a novel concept, for a better explanation we show the characteristics that
distinguishes an Exotask program from a program with common Java threads.
In a common Java program the developer has to implement the data and control flow
on his own, e.g., threads can access each others variables if they are public. This ac-
cessing is an operation that is part of the data flow of a program. Since there is no
automated protection against race conditions, the threads need to be synchronized.
This synchronization must be implemented by the application writer and is part of the
control flow of the program.

In an Exotask program the data flow is defined with explicit and deterministic seman-
tics and timing behaviors. The developer defines the data flow between the Exotasks
explicitly via connections.1 Additionally, the control flow is on an even higher level,
it is realized by the Exotask system that follows the constraints the developer has
defined, e.g., at which time an Exotasks has its deadline.

The main difference between Java threads and Exotasks is that a Java thread is a
common object with the capability to perform an execution concurrently, thus having
shared memory regions like any other object, whereas an Exotask is an isolated object
that is embedded in a system structure and can only communicate via explicitly de-
fined connections.

The Exotask model is entirely defined in the Java language. The main feature of
Exotasks is deterministic timing with time-portability. Any Exotask program that
is schedulable can be executed on different platforms in the same manner and ex-
ecution behavior, assuming that enough resources are available. Hence there is no
re-certification needed if there are underlying hardware or software changes. This
makes Exotasks platform-independent [27].
Exotasks provide essential real-time properties in combination with memory semantics
that are close to the original Java memory semantics. Hence, they provide a high-level
programming concept with the guarantees needed for real-time applications. To prop-
erly run Exotasks a modified Java Virtual Machine (JVM) is needed that is capable of
enforcing Exotask memory isolation.

1A graphical tool is provided to assist the developer in defining the data flow, e.g., the developer
draws the graph and connects two Exotasks with a connection.

Control 34 Bernhard Kast

Jarol - Java Control Infrastructure 3.4. EXOTASKS

3.4.1 Isolation

Exotasks are isolated in two ways. They are physically isolated in space (memory) and
logically isolated in time.

Memory isolation is done to preserve deterministic behavior and enforce memory pro-
tection. The inspection or modification of non-final static fields is not allowed. Ex-
otasks are stateless functions, which means that the output of the function is only
determined by the input of the function. The access to a non-final static field would
break this statelessness, because the output could be influenced from elements (the
non-final static fields) residing outside the function. The memory isolation is enforced
by a verifier that checks if tasks are inspecting or modifying any non-final global vari-
ables, which would break the isolation, thus failing the garbage collection. This leads
to certain restrictions when programming with Exotasks, which are discussed in detail
below.

The creation of threads is also forbidden, because it would prevent an accurate schedul-
ing. The schedule for an Exotask graph is calculated before the execution, but standard
threads do not provide facilities to determine their execution time, breaking the cal-
culated schedule.

The timing isolation is more complex and out of the scope of this thesis.

3.4.2 An Exotask Program

Each Exotask program consists of three major components:

• The specification graph.

• The user code.

• The timing annotations.

The specification graph2 describes the structure of the Exotask program. It holds the
information of the structure and interaction of the system. A graph consists of several
nodes representing Exotasks that are connected via connections. Each Connection has
an associated data type. Figure 3.1 shows an Exotask graph with five Exotasks, four
communicators and one compute task, which we describe further below.

The user code is the implementation of the functional behavior of the Exotask pro-
gram. In Figure 3.1 only the ExoLAUVController (a compute task) has an associated
class, which contains user code. Note that there are other classes in an Exotask pro-
gram that provide functionality and are not represented in the graph, like distributers,
which are described below.

2The graph can be graphically manipulated with an Eclipse plugin. Since it is stored in an XML
file it is also possible to edit the graph with a common text editor.

Control 35 Bernhard Kast

Jarol - Java Control Infrastructure 3.4. EXOTASKS

The timing annotations specify the timing behavior of the graph. The timing is de-
termined by the user and is preserved when the Exotask program moves to a different
platform. Annotations are attached to Exotasks, connections, or the whole graph.

Memory Allocation

Every Exotask has a private heap and a garbage collector of its own. These garbage
collectors can be executed on-demand or scheduled. The private heap follows the stan-
dard Java memory model, thus allowing the convenient way of Java memory allocation.
This means the developer can allocate memory freely and unreachable memory regions
get garbage collected.

Inter Exotasks Communication - Connections and Ports

The nodes of the graph specify the Exotasks. Nodes are connected via directed edges
called connections. These explicitly defined connections are the only way how Exo-
tasks can communicate with each other, thus enforcing the isolation of each Exotask.
Any object that is transfered via a connection is deep copied, hence there is no sharing
between Exotasks.

Connections connect the output port of one Exotask to the input port of another Ex-
otask. In Figure 3.2 the various levels of the communication abstraction can be seen.
Connections are defined by the developer in the graph definition, whereas the devel-
oper uses (reads from and writes to) the associated ports in the actual implementation.

Ports are attachment points for connections. A port is directed, it is either an input
or an output port. Two ports are connected via connections in the graph and must
be of the same data type. Data types that are transfered via ports must implement
a method that provides deep copying. This is not necessary for data types that are
supported by the Exotasks system.

Compute Tasks

Compute tasks are Exotasks that are used for computation of the user code, which are
for example - in the context of the JAviator - control algorithms. A compute task has
both input and output ports to communicate with other Exotasks.

Communicators

Communicators are special Exotasks that have one input and one output port of identi-
cal type. Communicators are mainly used as attachment points for so called distributers
that allow to extend an Exotask graph over machine boundaries, as explained in the
following section.

Control 36 Bernhard Kast

Jarol - Java Control Infrastructure 3.4. EXOTASKS

3.4.3 Extending the Exotask Graph

To extend an Exotask graph over the isolation boundaries a so called distributer is
used. A distributer links objects residing outside of the Exotask system to Exotasks.
It uses anchor points (ExotaskRoots) that are connected to communicators. These
communicators are used to exchange data with the external system. Note that to con-
nect Java threads with an Exotask system it is also necessary to use a distributer.

Connections are used for inter-Exotask communication, whereas channels are used for
communication between Exotasks and components that are outside of the Exotask
graph. Channels connect anchor points (ExotaskRoots) of the distributer to the com-
municators, thus allowing the data to pass from outside into the Exotask graph, as
can be seen in Figure 3.3.

Figure 3.1: The Exotask Graph of the ExoLAUV.

3.4.4 Programming with Exotasks

Programming with Exotasks is similar to programming common Java programs with
certain distinctions. A difference is that the program design is not solely done in the
source code. In the Exotask system the developer uses a graphical editor or directly
manipulates the XML file to define the graph. The graph constitutes of different Ex-
otasks and their connections to each other, it also contains the timing grammar and

Control 37 Bernhard Kast

Jarol - Java Control Infrastructure 3.4. EXOTASKS

timing
grammar

Exotasks

compute
task

sensor actuator

Highest Abstraction level

sensor
compute

task
output
port

input
port

Mid Level

Low Level

Figure 3.2: Exotask Abstraction Levels

Standard
Java Thread

ExotaskExotaskRoot

Exotask
Channel

Outside the Exotask System/Graph Inside the Exotask System/Graph

Distributer

Figure 3.3: Exotask Channel

Control 38 Bernhard Kast

Jarol - Java Control Infrastructure 3.4. EXOTASKS

timing annotations. The actual implementation of the user code is nearly identical,
besides the call of some Exotask-specific methods and the restrictions enforced by the
Exotask system.

Designing the Graph

Programming an Exotask program begins with the design of the key parts of the Exo-
task program and its interfaces towards the platform. The graph makes the data flow
between the various Exotasks explicit. The developer also defines timing annotations
that enforce the execution deadlines.

User Code

For every Exotasks that needs to be implemented, e.g., a compute task, an associ-
ated class is created. This class has objects for the input and output ports. Note
that these ports need to be defined in the graph with the connections between two
Exotasks. The developer can only use these ports to communicate between Exotasks.
Ports offer methods to get and set values, thus presenting a simple interface for the
developer. The implementation is similar to the implementation of a Java thread. The
class needs to implement the Runnable interface and the Exotask code is located in
the run() method.

Restrictions

There are two major restrictions:

(1) The handling of non-final static fields is disallowed.

(2) The creation of threads is also prohibited.

3.4.5 Summary

Exotasks are a specific concept in Java for providing deterministic execution and time-
portability of written programs. The isolation model implies certain restrictions in
programming and interfacing Exotasks.

We need an interface that allows us to transfer data in and out of the Exotask graph.
Thus we need to design and implement that allows to connect Exotasks across machine
boundaries.

Control 39 Bernhard Kast

Jarol - Java Control Infrastructure3.5. TOWARDS A GENERAL CONCURRENCY INTERFACE

3.5 Towards a General Concurrency Interface

The goal is to support the mentioned concurrency models (and possibly more) in Jarol,
in order to provide a generic data-exchange and synchronization interface for the dif-
ferent concurrency models it is necessary to make the data and control flow as explicit
as possible.

We want to reduce the amount of thread locking to a minimum, hence protecting
shared memory via locks is not an option. The common synchronization techniques
are too limited and do not provide support for deterministic behavior, since wrong
synchronization in Java leads to “very strange, confusing and counter-intuitive behav-
ior”. We need a model that is very strict upon synchronization failures to prevent any
silent-failure in context of synchronization. A mechanism to share or transfer this data
between different Java threads is necessary.

The Exotask system relies on isolation. To preserve isolation, Exotasks ports are
used for transferring data between different Exotasks. Hence we need mechanisms to
provide deterministic synchronization and for exchange of data, between threads and
into Exotasks.

Control 40 Bernhard Kast

Chapter 4

Design

We outlined and explained the hardware and software platforms in Chapter 2. Then
we introduced and described the concurrency models that we use for the execution of
the control code in Chapter 3. In this chapter we describe the concepts that we derived
from the analysis of the previous chapters.

4.1 System Structure

Figure 4.1 shows the system structure of Jarol, it constitutes of the external system
and the three Jarol layers:

• The external system is the underlying platform, e.g., a vehicle with its software
architecture. Color code, red.

• The Jarol Interface Ring is the layer that abstracts away the control-irrelevant
message information. Color code, green.

• The Jarol Adaptation Layer translates the synchronization logic of the platform
to the Jarol synchronization information. Color code, yellow.

• The Jarol Core performs the execution of the control code. Color code, blue.

To improve readability every layer has an assigned color, this color is used throughout
the thesis for the different components that reside in these structural parts.

4.1.1 External System

The external system is constituted by the the hardware and software of a project -
the platform. Each platform uses different kinds of messages to communicate with the
Jarol Interface Ring, these messages contain control-relevant and irrelevant informa-
tion, e.g., the message encoding.

41

Jarol - Java Control Infrastructure 4.1. SYSTEM STRUCTURE

Jarol Core

Jarol Adaptation Layer

Jarol Interface Ring

External System

Figure 4.1: Jarol System Structure

Control 42 Bernhard Kast

Jarol - Java Control Infrastructure 4.1. SYSTEM STRUCTURE

Concurreny
System A
running

Control Code

Submarine

Concurreny
System B
running

Control Code

Helicopter

Figure 4.2: Two Jarol Systems exemplified.

Control 43 Bernhard Kast

Jarol - Java Control Infrastructure 4.1. SYSTEM STRUCTURE

4.1.2 Jarol Interface Ring

The main task of the Jarol Interface Ring is to abstract away the control-irrelevant
message information. Additionally, it converts the incoming data to Jarol Messages.
Thus all the information that passes through the Jarol Interface Ring is data that
follows Jarol standards.

The extracted data flow still contains some implicit project-specific information that
cannot be handled without further interpretation. Therefore the data is passed to the
Jarol Adapation Layer.

4.1.3 The Jarol Adaptation Layer

The Jarol Adaptation Layer uses the data flow from the Jarol Interface and extracts
the synchronization information. Since the synchronization information is encoded in
a platform dependent way, a project-wise implementation is necessary to identify the
control specific information and use it to generate Jarol-specific control information.
A scheme of the message conversion can be seen in Figure 4.3.

Message System

platform message

data flow control flow

platform-wise
protocol

External System

Jarol Core

Figure 4.3: Message Conversion

Control 44 Bernhard Kast

Jarol - Java Control Infrastructure 4.2. CONCEPTS

4.1.4 Jarol Core

The Jarol Core is where the control code is executed. The Jarol Core can be imple-
mented with different concurrency models, like standard Java Threads or the Exotask
System.

4.2 Concepts

We explained the Jarol layers, their purpose and responsibilities. A discussion follows
that describes the concepts used to connect these layers.

4.2.1 Thread

Figure 4.4 shows the symbol that is used throughout the thesis for threads.

Figure 4.4: Symbol for Thread.

4.2.2 Signals

A signal in Jarol is a synchronization point that allows different threads to synchronize
with each other. Figure 4.5 shows the symbol that is used throughout the thesis for
signals.

The notion “signal” is widely used in control engineering and computer science. Signal
in control engineering is a message. A signal in computer science is used for interpro-
cess communication, but with weaker semantics and on operating system level. When
we refer to signal we mean the definition given at the top of this section, if not other-
wise stated.

Figure 4.5: Symbol for Signals.

A signal S is a pair (State, n), where:

• State is the current state of the signal, State ∈ {normal, waiting},

Control 45 Bernhard Kast

Jarol - Java Control Infrastructure 4.2. CONCEPTS

• n ∈ N: the number of waiting threads on this signal.

A signal provides two operations to threads: await and signal. See Figure 4.6 for a
schematic of two threads on using a signal for synchronization.

When a thread calls await on a signal:

• The calling thread is suspended.

• State is set to waiting.

• The number n is increased by one.

When a thread calls signal on a signal with one or more waiting threads:

• The calling thread notifies all awaiting threads and then continues its execution.

• The number n is decreased by one of the awakened thread.

• If n < 1 the awakened thread sets State to normal.

When a thread calls signal on a signal without a waiting thread (n <= 0):

• A synchronization error is reported.

Signals in Jarol enforce a cooperation protocol that is strict. Signals are synchro-
nization points that are used for coordination with stronger semantics than common
signals, like described in [29]. This means that every operation on a signal has either a
positive or negative reaction for the caller. This prevents silent failures and any break
of synchronization is noticed immediately. Signals are used to make the control flow
explicit and ensure an exact execution sequence or any break in it.

A signal is used for synchronization of different threads. A signal has two primitives:
await and signal. The await primitive causes the caller to pause until a signal is emitted
from a different caller. The signal primitive wakes up all callers of the await primitive.
Signaling a signal in Jarol without some thread waiting for it, results in an error, be-
cause this means that the execution is out of order.

4.2.3 Ports

A Jarol port is an universal directional data exchange point, that provides non-blocking
and lock-free operations for a single writer and single reader. It provides a simple way
to buffer messages that can be used for data transfer between different components.
Thus breaking down the data flow to a simple form. Figure 4.7 shows the symbol that
is used for ports throughout the thesis.

A port P is an n-tuple (s,m0,m1,m2, ..., ms−1), where:

• s ∈ N is the size of the buffer,

• ∀m: m is a Jarol Message.

Control 46 Bernhard Kast

Jarol - Java Control Infrastructure 4.2. CONCEPTS

Running Running

await

Suspended Running

signal

Suspended Running

signal

Running Running

Figure 4.6: Two Threads synchronizing via a Signal.

Figure 4.7: Symbol for Port.

A port provides two operations: read and write. See Figure 4.8 for a schematic of two
threads using a port for data transfer.

When read is called on a non-empty port:

• The oldest element of the buffer is read and returned.

When read is called on an empty port:

• The value null is returned.

When write is called on a port, which is not full:

• The object is cloned and written into the next free slot of the buffer.

Control 47 Bernhard Kast

Jarol - Java Control Infrastructure 4.2. CONCEPTS

When write is called on a full port:

• The value null is returned.

write

read

Figure 4.8: Two Threads using a Port.

Ports are solely used for data that actually contains information that is relevant for
doing control. Implicit information like transfer information and synchronization infor-
mation is stripped away by the Jarol Interface Ring and/or the Jarol Adaptation Layer.

4.2.4 Time Triggers

A time trigger generates a periodic signal for its awaiting threads. Figure 4.9 shows
the symbol that is used throughout the thesis for time triggers.
A time trigger allows threads to wait on it and be signaled at a determined period.
A time trigger is interally composed of a signal and a thread. The thread signals the
signal at a given period to awake all waiting threads of the time trigger.

A time trigger TT is a 3-tuple (s, p, Thread), where:

Control 48 Bernhard Kast

Jarol - Java Control Infrastructure 4.2. CONCEPTS

Figure 4.9: Symbol for Time Trigger.

• s is a signal S,

• p ∈ N: the period that indicates how long the Thread sleeps until it emits
another signal,

• Thread is a thread.

A time trigger provides one operation for a thread: await. See Figure 4.10 for a
schematic of a thread on using a time trigger for time-triggered wakeup signal.

When a thread calls await on a time trigger:

• The calling thread is suspended.

• State is set to waiting.

• The number n is increased by one.

4.2.5 Links

A link provides a convenient way to abstract away different underlying connection
schemes. Figure 4.11 shows the symbol that is used throughout the thesis for links.
A link acts as a translator and forwarder from the external system to Jarol and back
again. It relies on the use of ports and signals. Interally it uses threads for communi-
cation with the external system, thus reducing the complexity of the Jarol Core and
Jarol Adaptation Layer implementation.

A link L is a 6-tuple (RecvThread, SendThread, InputPort, OutputPort, s, Translator),
where:

• InputPort is a port P used for buffering messages received from the external
system,

• OutputPort is a port P used for buffering messages to send to the external
system,

• RecvThread is a thread that receives data from the external system and places
it into the InputPort,

• SendThread is a thread that sends data to the external system,

• s is a signal S that emits signal to the SendThread, causing the messages in the
OutputPort to be sent,

Control 49 Bernhard Kast

Jarol - Java Control Infrastructure 4.2. CONCEPTS

Running

Sleeping for
n milliseconds.

Suspended

Running

Running Running

signal

Sleeping for
n milliseconds.

await

Suspended

TimeTrigger
Thread
using

TimeTrigger

Figure 4.10: The Composition and Interaction of a Time Trigger with a Thread.

Figure 4.11: Symbol for Link.

• Translator is a translator that translates messages from the external system into
Jarol Messages and the other way round.

A link provides two operations: connect and disconnect.

When connect is called on an unconnected link:

Control 50 Bernhard Kast

Jarol - Java Control Infrastructure 4.2. CONCEPTS

• A connection is set up.

• RecvThread and SendThread are created and started.

When connect is called on a connected link:

• Nothing.

When disconnect is called on a connected link:

• The link waits for any pending sending and receiving operations to complete.

• Stops the RecvThread and SendThread.

• Disconnects.

When disconnect is called on an unconnected link:

• Nothing.

Figure 4.12 shows the composition of the link and its usage of Jarol components.

SenderThreadReceiverThread

signal() from outside
of the link

Figure 4.12: Link Composition

4.2.6 Jarol Messages

A Jarol Message is an arbitrary class that implements a set of operations, thus allowing
the use of generic code in the port implementation. Jarol Messages are a convenient
way for message transfer and manipulation in the Jarol system.

Control 51 Bernhard Kast

Jarol - Java Control Infrastructure 4.3. FORMAL DEFINITIONS OF THE LAYERS

4.2.7 Message System

The main functions of the message system are the translation of project-specific mes-
sages into Jarol Messages, the creation of Jarol Messages, and communication between
the external system and Jarol. Therefore, it is used in all Jarol layers, e.g., Jarol Inter-
face ring where it converts the messages from the external system to Jarol Messages,
inside the Jarol Core when new messages are created with the use of factories.

The message system manages all incoming messages from the external system, in order
to do this, it is necessary to define any message of the project precisely. Thus allowing
the conversion of all known incoming messages into Jarol Messages. Jarol Messages
implement a small set of operations to support the management of the Jarol-specific
data flow.

When a Jarol Message is sent to the external system, it is translated back into the
appropriate format, so that it can be used by the external system. To ease up the
message creation there are also message factories available that allow to generate Jarol
Messages in an easy and convenient way.

Additionally, the message system provides facilities to create and manage connections
with the external system that are represented as so called links. Links provide a set of
operations to perform message passing into and out of Jarol with implicitly converting
the messages into the appropriate format.

4.3 Formal Definitions of the Layers

To extend the theoretical view onto the layers, we formalized the layers according to
the scheme used for the concepts. Since the layer definitions build upon the concept
definitions they are not provided earlier.

4.3.1 External System

An external system EXS is a pair (Sender, Receiver), where

• Sender is a component that sends messages to the RecvThread of a link L,

• Receiver is a component that receives messages from the SendThread of a link
L.

4.3.2 Jarol Interface Ring

A Jarol Interface Ring JIR is an n-tuple (L1, L2, L3, ..., Ln), where:

• ∀L: L is a link.

Control 52 Bernhard Kast

Jarol - Java Control Infrastructure 4.3. FORMAL DEFINITIONS OF THE LAYERS

4.3.3 Jarol Adaptation Layer

A Jarol Adaptation Layer JAL is an n-tuple (Adapter1, Adapter2, ..., Adaptern),
where:

• n ∈ N is the number of adapters.

• ∀Adapter: Adapter is a thread.

4.3.4 Jarol Core

A Jarol Core JC is a 3-tuple (Reader,Writer,Synchronizer), where:

• Reader is a runnable object that can read from ports P ,

• Writer is a runnable object that can write to ports P ,

• Synchronizer is an interface that can wait and signal on signals S.

Control 53 Bernhard Kast

Chapter 5

Implementation

In this chapter we provide a description of the Jarol implementation in Java. The
implementation consists of several Java packages that provide classes, abstract classes,
interfaces and exceptions. The corresponding classes are implementations of the con-
cepts mentioned in Chapter 4, that are mainly used in the Jarol Interface Ring. The
interfaces and abstract classes provide structure to implement the Jarol Core with
common Java threads.

The packages are:

• jarol - Provides classes and interfaces for the Jarol infrastructure without mes-
saging functionality.

• jarol.exceptions - Provides classes for the exception handling in the Jarol
infrastructure.

• jarol.messages - Provides core messaging functionality.

5.1 Package: jarol

The jarol package provides the facilities to realize the Jarol Interface Ring and Jarol
Adaptation Layer. Additionally it provides interfaces and abstract classes to ease up
the structure of the Jarol Core implementation.

Overview of interfaces:

• ActuatorInterface - The ActuatorInterface should be implemented by any
class whose instances should be an actuator interface.

• JarolCoreInterface - The JarolCoreInterface should be implemented by the
class that performs the control operations.

• MessageInterface - MessageInterface should be implemented by any class
whose instances should provide Jarol Message functionalities.

• NavigationInterface - The NavigationInterface should be implemented by
any class whose instances should be a navigation interface.

54

Jarol - Java Control Infrastructure 5.1. PACKAGE: JAROL

• SensorInterface - The SensorInterface should be implemented by any class
whose instances should be a sensor interface.

• TerminalInterface - The TerminalInterface should be implemented by any
class whose instances should be a terminal interface.

• TimeTriggerInterface - TimeTriggerInterface should be implemented by
any class whose instances should provide a periodic ”tick” on watchers.

Overview of classes:

• JarolCore - Abstract class for controlling a vehicle, includes fields and imple-
mented methods for a system with a vehicle and a terminal.

• JarolCoreWithLink - Abstract class for controlling a vehicle with the support of
UDPLinks, includes fields and implemented methods for a system with a vehicle
and a terminal.

• Port - Port is a data transfer point that provides concurrent access for a single
reader and a single writer.

• PortEnhanced - PortEnhanced is a data transfer point that provides concurrent
access for a single reader and a single writer with enhanced semantics that never
refuse a write operation.

• Signal - Signal is a synchronization point, the await() call causes the calling
thread to be suspended until a signal() call is performed by an arbitrary thread.

• TimeTrigger - TimeTrigger is a periodic signal.

5.1.1 ActuatorInterface

The ActuatorInterface is an interface that provides methods for structuring threads
that implement interfaces that represent platform actuators.

Overview of methods:

• void actuatePlant(MessageInterface[] actuatorData) - Forwards the ac-
tuator data to the actuator unit.

• void awaitJarolCore() - Awaits a signal from the Jarol Core to continue.

• MessageInterface[] readFromJarolCore() - Reads the data that was pro-
vided by the Jarol Core.

Control 55 Bernhard Kast

Jarol - Java Control Infrastructure 5.1. PACKAGE: JAROL

5.1.2 JarolCoreInterface

The JarolCoreInterface is an interface that provides methods for structuring threads
that implement the Jarol Core that executes the control code. Depending on the archi-
tecture some methods need not to be implemented, e.g., signalNavigation() is only
needed if the design requires that the navigation unit is activated at a deterministic
point.

Overview of methods:

• void awaitNavigation() - Waits for a signal from the navigation interface to
continue.

• void awaitSensor() - Waits for a signal from the sensor interface to continue.

• MessageInterface[] computeActuationData(MessageInterface[] sensorData,

MessageInterface[] navigationData) - Calculates the information (e.g., mo-
tor signals, thruster, fin positions, ...) and returns an array of messages containing
this information.

• void controlLoop() - Should be called in the run() method and contains a
loop that calls all the necessary methods of JarolCoreInterface.

• void forwardToActuator(MessageInterface[] actuatorData) - Forwards the
actuation data to the actuator interface.

• void forwardToNavigation(MessageInterface[] sensorData) - Forwards sen-
sor data to the navigation interface.

• void forwardToTerminal(MessageInterface[] dataBundle) - Forwards data
to the terminal, e.g., sensor data, actuator data, etc. that should be used by the
terminal.

• MessageInterface[] readFromNavigation() - Reads navigation data from the
navigation interface.

• MessageInterface[] readFromSensor() - Reads data from the sensor inter-
face.

• void signalActuator() - Signals the actuator interface to continue.

• void signalNavigation() - Signals the navigation interface to continue.

• void signalTerminal() - Signals the terminal interface to continue.

5.1.3 MessageInterface

The MessageInterface is an interface that provides three methods that allow generic
programming in the port implementation and support for the Exotask system. Every
instance of a class that implements the MessageInterface can be transfered along

Control 56 Bernhard Kast

Jarol - Java Control Infrastructure 5.1. PACKAGE: JAROL

with ports and used with Exotasks and Java threads.

Overview of methods:

• Object clone() - Clones this object, needed for Jarol port compatibility.

• Object deepClone() - Deep clones this object, needed for Exotask compatibility.

• String toString() - Returns a string representation of this object.

5.1.4 NavigationInterface

The NavigationInterface is an interface that provides methods for structuring threads
that implement interfaces to navigation units.

Overview of methods:

• void awaitExternalNavigationData() - Awaits navigation data from the ex-
ternal navigation unit.

• void awaitJarolCore() - Awaits the Jarol Core to continue.

• void forwardNavigationData(MessageInterface[] navigationData) - For-
wards the navigation data to the Jarol Core.

• void forwardSensorDataToNavigationUnit(MessageInterface[] sensorData)

- Forwards the sensor data to the external navigation Unit.

• MessageInterface[] readNavigationData() - Reads the navigation data from
the navigation unit.

• MessageInterface[] readSensorData() - Reads the sensor data from Jarol
Core.

• void signalJarolCore() - Signals the Jarol Core.

• void signalNavigationUnit() - Signals the external navigation unit.

5.1.5 SensorInterface

The SensorInterface is an interface that provides methods for structuring threads
that implement interfaces to sensors.

Overview of methods:

• void awaitExternalSensor() - Waits for input from the sensor unit.

• void forwardToJarolCore(MessageInterface[] sensorData) - Forwards the
sensor data to the Jarol Core.

• MessageInterface[] readSensorData() - Reads the sensor data.

• void signalJarolCore() - Signals the Jarol Core to continue.

Control 57 Bernhard Kast

Jarol - Java Control Infrastructure 5.1. PACKAGE: JAROL

5.1.6 TerminalInterface

The TerminalInterface is an interface that provides methods for structuring threads
that implement interfaces to terminals.

Overview of methods:

• void awaitJarolCore() - Awaits Jarol Core to continue.

• void forwardDisplayData(MessageInterface[] displayData) - Forwards the
sensor data to the terminal application.

• MessageInterface[] readDisplayData() - Reads the display data.

• void signalTerminal() - Signals the terminal.

5.1.7 TimeTriggerInterface

The TimeTriggerInterface is an interface that provides methods for threads that
should provide a periodic “tick” on watchers.

Overview of methods:

• void await() - Causes the calling thread to be suspended until the period is
finished.

• int getPeriod() - Returns the current period.

• void setPeriod(int period)() - Sets the period in milliseconds.

• void stopExecution() - Stops the execution of the time trigger.

5.1.8 JarolCore

The abstract class JarolCore provides fields and implements some of the methods
of the JarolCoreInterface. It provides the developer with base implementations for
various methods. It supports the structuring of threads that implement the Jarol Core.
Depending on the architecture some methods need not to be implemented.

Overview of methods - see JarolCoreInterface.

5.1.9 JarolCoreWithLink

The abstract class JarolCoreWithLink inherits the abstract class JarolCore and pro-
vides two links for the communication with the platform. One is supposed to be used
with the vehicle and one with the terminal.

Overview of methods that are not included in JarolCore:

Control 58 Bernhard Kast

Jarol - Java Control Infrastructure 5.1. PACKAGE: JAROL

• UDPLink setupUDPLink(MessageFactory messageFactory, java.lang.String

host, int localPort, int remotePort, int receiveBufferSize,

int sendBufferSize) - Creates an UDPLink on the localPort to a given host
on its remotePort.

5.1.10 Signal

A signal is a synchronization point that allows different threads to synchronize and
coordinate with each other. Presenting the developer with a scheme that allows him
to implement a strict synchronization protocol. This is supported by strong semantics.
Every operation on a signal either produces the indented reaction or creates an excep-
tion that includes information why the intended operation could not be performed.

Overview of methods:

• await() - Causes the caller to be suspended until signal() is called.

• signal() - All calling thread of await() call are resumed.

If the intended behavior cannot be fulfilled a subclass of SignalException or an
InterruptedException is thrown. There are four different cases:

1. signal() is invoked and there is no thread waiting. A SignalNotAwaitedException

is emitted.

2. signal() is invoked while signaling is in progress. This is the result of a not
completed execution of a previous signal call, when a signal is called. This
means that the wake up phase of the awaiting thread(s) was interrupted. Hence
a SignalDuringSignalingException is thrown.

3. await() is invoked while signaling is in progress. This is the result of a not
completed execution of a previous signal call, when an await is called. This means
that the wake up phase of the awaiting thread(s) was interrupted. Resulting in
the throw of a AwaitDuringSignalingException.

4. The awaiting thread is interrupted, this happens if an interrupt() is called.

We implemented signals with the use of await(), notify(), a counter (watching) and
a condition variable.

signal()

The algorithm in Figure 5.1 presents the source of code of the signal() method. The
watching variable indicates how many threads are awaiting this signal. The condition
variable is set to false at initialization. Its purpose is to indicate if the thread is allowed
to continue its execution and to detect a signaling conflicts.

At the beginning the condition variable is checked. If it is true a signal was per-
formed before and no await() was called meanwhile, thus we emit a SignalDuring-

Control 59 Bernhard Kast

Jarol - Java Control Infrastructure 5.1. PACKAGE: JAROL

SignalingException. Else we check if there are any threads watching on this signal,
if not we emit a SignalNotAwaitedException, because a signal must be awaited. If
no exception occurred, we set the condition true and notify all threads waiting on this
monitor.

public synchronized void signal()
throws SignalDuringSignalingException, SignalNotAwaitedException

{
if (condition)

throw new SignalDuringSignalingException();
if (watching < 1)

throw new SignalNotAwaitedException();
condition = true;
notifyAll();

}

Figure 5.1: Source code for signal().

await()

The algorithm in Figure 5.2 presents the source of code of the await() method. The
variable watching indicates how many threads are awaiting this signal. The condition
variable is set to false at initialization. It indicates if the thread is allowed to continue
its execution and to detect signaling conflicts.

First we check if the condition variable is set correctly, if it is true this would indicate
that a signal was called and an await() was called afterwards before a thread could
awake from the evoked signal. Thus we emit an AwaitDuringSignalingException.
Then we increase the number of watching threads by one. In the try block we use a
while loop that checks condition in order to prevent wake-ups from wrong notifica-
tions.
The finally block is executed in any situation, thus when a threads awakes after calling
wait() the watching counter is decremented, when it is smaller than zero the condition
is set to false again, indicating that the last thread has been awaked (and the last
signal was used up).

5.1.11 Port

A port acts as a data transfer point that provides concurrent access for a single reader
and a single writer. Objects that implement the MessageInterface can write into and
read from it. It contains a circular FIFO buffer, if its capacity is reached the writer
is rejected, until an object is removed from a port. We also implemented a port with
different buffer semantics (see PortEnhanced). Since Java uses call-by-reference, the
object written into the buffer needs to be cloned. The method for cloning is provided
by the MessageInterface.

Control 60 Bernhard Kast

Jarol - Java Control Infrastructure 5.1. PACKAGE: JAROL

public synchronized void await()
throws AwaitDuringSignalingException

{
if (condition)

throw new AwaitDuringSignalingException();
watching++;

try
{

while (!condition) //in order to avoid "wrong" notifications/wake-ups
wait();

}
catch (InterruptedException e)
{

throw new RuntimeException("awaiting interrupted.");
}
finally //executed in anyway
{

watching--;
if (watching < 1)

condition = false;
}

}

Figure 5.2: Source code for await().

The port main operations are read() and write(), which are non-blocking. Addition-
ally there is a method to retrieve the buffer size.

Overview of methods:

• int getBufferSize() - Returns the buffer size.

• MessageInterface read() - Reads the oldest element from the buffer.

• boolean write(MessageInterface item) - Writes an item into the buffer.

5.1.12 PortEnhanced

PortEnhanced is a data transfer point that provides concurrent access for a single
reader and a single writer with enhanced semantics that will never reject a write op-
eration. The internal buffer we call Circular Pushing Buffer. This kind of buffer does
not reject a write operation even if the buffer is full. In case of a full buffer a write
results in the overwriting of the oldest object with the new object.

Overview of methods:

• int getBufferSize() - Returns the buffer size.

• MessageInterface read() - Reads the oldest element from the buffer.

• boolean write(MessageInterface item) - Writes an item into the buffer.

Control 61 Bernhard Kast

Jarol - Java Control Infrastructure 5.1. PACKAGE: JAROL

The Circular Pushing Buffer is a circular buffer for a single writer and a single reader.
Contrary to existing implementations like [35] our writer is able to overwrite old val-
ues, thus pushing the reader forward, when it is too slow or inactive. This provides a
storage for current data within a user-determined boundary.

We assume that simple integer operations are performed atomically, this is supported
by a Java implementation compliant with the Java Language Specification [37]. We
do not use any synchronization primitives, like test-and-set, monitors, semaphores, etc.

The algorithm follows these principles:

• The writer is always allowed to write, this means the write operation is always
successful.

• The reader attempts to read. The read operations returns null if the buffer is
empty, else it retries until a valid value is read.

– The reader checks in the read attempt, if its index is still in a valid range:

∗ Valid range: read value and move read pointer one slot forward.

∗ Invalid range: push forward : sets the read index to the oldest element,
a normal read (see valid range) is performed afterwards.

We use four integer indices to provide protection of the critical section, manage the
access to the buffer elements and determine if the read index is in a valid range.
These indices are composed of two indices for the actual element in the buffer (called
readIndex and writeIndex) and two indices to save the number of wraparounds of
the former. We call the number of wraparounds levels (readLevel and writeLevel),
since they indicate the age of the related index.

Algorithm 1 void write(MessageInterface item)

1: //ASSUMPTION: writeIndex is even
2: writeIndex := writeIndex + 1;
3: writeBuffer(writeIndex >> 1, item);
4: if (writeIndex + 1 = bufferSize * 2) then
5: writeLevel := writeLevel + 1;
6: writeIndex := 0;
7: else
8: writeIndex := writeIndex + 1;
9: end if

The write() Method can be seen in Algorithm 1. It uses a writeIndex that is
similar to a concurrency control field as seen in [36]. The writeIndex has two purposes:
(1) as an index for the writer and (2) as a concurrency control field that indicates the
entry in and exit of a critical section, similar to [35].

When write() is called we assume, that writeIndex is even. At the beginning
writeIndex is increased to an odd value, this indicates that writing is in progress.

Control 62 Bernhard Kast

Jarol - Java Control Infrastructure 5.1. PACKAGE: JAROL

Then the write to the buffer is executed. The writeLevel is increased if a wraparound
will occur (this is the case if writeIndex would exceed the buffersize). The update of
the level needs to be done in the critical section. Finally, the writeIndex is set to an
even value, to indicate the exit of the critical section.

Algorithm 2 MessageInterface read()

1: while true do
2: savedWriteIndex := writeIndex;
3: savedWriteLevel := writeLevel;
4: if (savedWriteIndex is even) then
5: //have we read a consistent pair of index and level?
6: if (savedWriteIndex = writeIndex) AND (savedWriteLevel = writeLevel)

then
7: if (savedWriteLevel = readLevel) then
8: if (readIndex = savedWriteIndex) then
9: //buffer empty

10: return NULL;
11: end if
12: else
13: //ASSUMPTION: Integer.MIN VALUE = Integer.MAX VALUE + 1
14: if (savedWriteLevel != readLevel + 1) OR (savedWriteIndex > readIn-

dex) then
15: //writer passed reader, set reader to oldest element
16: readIndex := savedWriteIndex;
17: //ASSUMPTION: Integer.MAX VALUE = Integer.MIN VALUE - 1
18: readLevel := savedWriteLevel - 1;
19: end if
20: end if
21: item := readBuffer(readIndex >> 1);
22: //have we read a consistent copy of the buffer element?
23: if (savedWriteIndex = writeIndex) AND (savedWriteLevel = writeLevel)

then
24: readIndex = readIndex + 2;
25: if (readIndex = bufferSize*2) then
26: readIndex := 0;
27: //ASSUMPTION: Integer.MIN VALUE = Integer.MAX VALUE + 1
28: readLevel := readLevel + 1;
29: end if
30: return item;
31: end if
32: end if
33: end if
34: end while

Control 63 Bernhard Kast

Jarol - Java Control Infrastructure 5.1. PACKAGE: JAROL

The read() Method can be seen in Algorithm 2. It returns null if an empty
buffer is detected or loops until a successful read is performed. It begins with the
saving of the current writeIndex and writeLevel in the local savedWriteIndex and
savedWriteLevel. In line 4 it determines if there is no writing in progress.1 Then
we check the consistency of savedWriteIndex and savedWriteLevel. Next we check
for equality of the savedWriteLevel and readLevel. If they are equal, we check if
savedWriteIndex and readIndex are also equal. If this is the case, they point at the
same slot, thus we have an empty buffer. If savedWriteIndex and readIndex are not
equal, we still know that the levels are equal, hence the readIndex is in a valid range,
therefore the value is read out of the buffer in line 21.

If the savedWriteLevel and readLevel are not equal, we need to check if the distance
between them is in range, if not a push forward of the readIndex and readLevel is
necessary. Since we know, that savedWriteLevel and readLevel are not equal, we can
do an optimized checking. If the writeLevel is not bigger by one than the readLevel,
we are out of range, hence we need to push forward. If it is not the case (writeLevel =
readLevel + 1), it is still possible that the writer has overtaken the reader, this would
be the case if the savedWriteIndex is bigger than the readIndex, thus we need to
do a push forward. This is done in line 16 to 18. Else we would just continue to line 21.

In line 21 the value from the buffer is read. Next is a test on savedWriteIndex and
savedWriteLevel to determine if no write occurred meanwhile (before and during the
read). If this holds the read value is valid. In this case, the following is performed:
The readIndex is increased by two, then we check if readIndex is two times the size
of the buffer, this indicates a wrap around, hence readIndex is set to 0 and readLevel

is increased by one. Finally we return the read item.

The theoretical limitation in this algorithm is the following: Assume the writer writes
so often, that even the writeLevel is wrapped around. Hence, the reader appears to be
in the valid range, thus there is no accurate update of the readIndex and readLevel.
Practically the probability of this is situation is unlikely: it is 2

bufferSize∗MaxSizeOfInt
.

5.1.13 TimeTrigger

A TimeTrigger is a signal that performs the signaling on its own every n milliseconds.
It is similar to a signal with the difference that it only provides an await() call and no
primitive for signaling. The TimeTrigger has a timed thread that performs a signal
every n milliseconds to all awaiting threads. The TimeTrigger is used to introduce
time-triggered behavior without the explicit use of sleep() by the user.

Overview of methods:

• void await() - Causes the calling thread to be suspended until the period is
finished.

1In all following cases if the check is not passed the reader loops back to the beginning, except it
is noted otherwise.

Control 64 Bernhard Kast

Jarol - Java Control Infrastructure 5.2. PACKAGE: JAROL.MESSAGES

• int getPeriod() - Returns the current period.

• void run() - Performs the sleeping and waking up.

• void setPeriod(int period)() - Sets the period in milliseconds.

• void stopExecution() - Stops the execution of the internal timing thread.

5.2 Package: jarol.messages

The jarol.message Java package provides core messaging functionality. The package
defines classes and interfaces needed to operate with messages. This package was im-
plemented by Eduardo Marques.

Overview of interfaces:

• MessageFooter - The MessageFooter interface should be implemented by any
class whose instances should be encoding the footer of the message set.

• MessageHeader - The MessageHeader interface should be implemented by any
class whose instances should be encoding the header of the message set.

• MessagePart - The MessagePart interface should be implemented by any class
whose instances should be encoding of the parts of the message set.

Overview of classes:

• Buffer - Buffer class for serialization.

• Link - Jarol-wise, non-blocking, lock-free bidirectional message link abstract
class.

• Message - Base class for messages.

• MessageFactory - Message factory interface.

• SerializationHandle - Application parameterization for message factories and
serialization.

• TCPClientLink - TCP client socket message link.

• TCPServerLink - TCP server socket message link.

• UDPLink - UDP socket message link.

Control 65 Bernhard Kast

Jarol - Java Control Infrastructure 5.2. PACKAGE: JAROL.MESSAGES

5.2.1 Link

The abstract class Link implements a large part of the communication with the exter-
nal system, it also converts the incoming messages into Jarol Messages. This conversion
is done with message factories. Link uses Jarol ports and signals. Additionally, it uses
threads to read and write to the external system in a non-blocking way. It is an ab-
stract class that allows to implement actual network links. In Jarol we have concrete
links that implement links for UDP and TCP.

Overview of methods:

• void connect() - Connect the message link.

• boolean connected() - Check if link is connected.

• void disconnect() - Disconnect the message link.

• void getRecvPort() - Get receive port.

• void getSendPort() - Get send port.

• void getSendSignal() - Get send signal.

• abstract int recv(byte[] buf, int off, int len, int timeout) - Abstract
method used to receive data.

• abstract void send(byte[] data, int off, int len) - Abstract method used
to send data.

• abstract void start() - Abstract method for starting the link.

• abstract void stop() - Abstract method for stopping the link.

Overview of classes that inherit Link:

• TCPClientLink - This message link allows simple bi-directional communication
using a client TCP socket connected to a specified remote TCP server socket.

• TCPServerLink - This message link allows simple bi-directional communication
using a server TCP socket.

• UDPLink - This message link allows simple bi-directional communication between
UDP ports. The local host will listen on a specified local port for messages and
send messages to a specified UDP port on a remote host.

5.2.2 MessageFactory

The abstract class MessageFactory defines factory methods to instantiate messages,
message headers and footer. It provides methods for serialization and de-serialization
enabling a convenient facilities to communicate with the external system.

Since MessageFactory is used inside of links we omit the listing of the methods.

Control 66 Bernhard Kast

Jarol - Java Control Infrastructure 5.3. PACKAGE: JAROL.EXCEPTIONS

5.3 Package: jarol.exceptions

The jarol.exceptions Java package contains the Jarol specific exceptions.

Overview of classes:

• AwaitDuringSignalingException - This exception is thrown by the signal to
indicate that an await() was called while signaling was in process.

• SignalDuringSignalingException - This exception is thrown by the signal to
indicate that a signal() was called while signaling was in process.

• SignalException - Thrown by signal to indicate a signaling violation.

• SignalNotAwaitedException - This exception is thrown by the signal to indicate
that a signal() was called without an awaiting thread on this signal.

Control 67 Bernhard Kast

Chapter 6

Application

In this chapter we demonstrate the use of the Jarol infrastructure with the JAviator
and Seascout systems. Additionally we use different concurrency models to show the
flexibility of the infrastructure. Thus we implement:

(1) the JAviator with Java threads,

(2) the LAUV with Java threads,

(3) the LAUV with Exotasks.

6.1 The Jarol JAviator

In the Jarol JAviator application we use the Jarol infrastructure to interface the con-
trol code of the JAviator. The goal is to leave the code base of the JAviator unchanged
and interface the existing control code within the Jarol infrastructure.

We use the JAviator control code, the MockJAviator, and the Control Terminal. For
details on these components please refer to Chapter 2.

6.1.1 Structure

As can be seen in Figure 6.1 the Jarol JAviator has two elements that represent the
external system (red). These are the MockJAviator that simulates the JAviator and
the Control Terminal that reads user input and displays the sensor and actuation data.
In this case the external system is directly connected to the Jarol Adaptation Layer (yel-
low) that consists of three threads: SensorThread, ActuatorThread and TerminalThread.
These threads use signals and ports to interact with the Jarol Core thread (blue), where
the control code is executed.

The data flow inside of Jarol is solely organized via ports, thus the different threads
only read from and write to ports. The control flow is made explicit with signals.
Signals are used for thread synchronization.

68

Jarol - Java Control Infrastructure 6.1. THE JAROL JAVIATOR

MockJAviator

Control Terminal

SensorControllerPort

SensorControllerSignal

await()signal()

ControllerActuatorPort

ControllerActuatorSignal

signal()

await()

TerminalControllerPort

ControllerTerminalPort

User trying to crash the MockJAviator

SensorThread

Jarol Core

TerminalThread

ActuatorThread

signal()

await()

ControllerTerminalSignal

signal()
await()

TimeTrigger

Figure 6.1: Jarol JAviator

Control 69 Bernhard Kast

Jarol - Java Control Infrastructure 6.1. THE JAROL JAVIATOR

6.1.2 Jarol Adaptation Layer

The Jarol Adaptation Layer (yellow) is the layer between the Jarol Interface Ring and
the Jarol Core. In this case the layer contains three threads: SensorThread, Actua-
torThread and the TerminalThread. Within this layer the translation of the JAviator
protocol to an explicit data and control flow is performed. This means the JAviator
messages are converted into Jarol Messages (data flow) and signals are emitted on
JAviator messages that contain synchronization information (control flow).

SensorThread

The SensorThread is used to read messages from the MockJAviator, it synchronizes
with the Jarol Core for which it converts and forwards these messages. In Figure 6.1
the SensorThread is located at the left side. It interacts with the Jarol Core via the
SensorControllerPort and SensorControllerSignal.

Output ports: SensorControllerPort
Input ports: -
Signaling signals: SensorControllerSignal
Awaiting signals: -

The SensorThread is time-triggered by a TimeTrigger that sends a tick every 20 ms.
The received messages are converted into Jarol Messages and written to a port (Sen-
sorControllerPort) that is read by the Jarol Core. When the sensor data is read a
signal is emitted on the SensorControllerSignal, because the sensor message from the
JAviator is also used for synchronization. This signal triggers the Jarol Core that waits
on SensorControllerSignal and starts its execution. After signaling the Jarol Core the
SensorThreads awaits the next timed signal from the TimeTrigger.

ActuatorThread

The ActuatorThread is used to read messages from the Jarol Core, it converts and
forwards these message to the MockJAviator. In Figure 6.1 the ActuatorThread is lo-
cated at the right side. It interacts with the Jarol Core via the ControllerActuatorPort
and ControllerActuatorSignal.

Output ports: -
Input ports: ControllerActuatorPort
Signaling signals: -
Awaiting signals: ControllerActuatorSignal

The ActuatorThread is triggered by the Jarol Core. When the application starts, the
ActuatorThread awaits the Jarol Core, going in a waiting state immediately. When
it is triggered it converts the Jarol Message read from the ControllerActuatorPort to
a JAviator message and forwards it to the external system (MockJAviator). Then it

Control 70 Bernhard Kast

Jarol - Java Control Infrastructure 6.1. THE JAROL JAVIATOR

awaits the next signal from the Jarol Core.

TerminalThread

The TerminalThread is used to interact between the Control Terminal and the Jarol
Core. The TerminalThread reads and forwards data from the Jarol Core to the Control
Terminal. It also forwards the user input from the Control Terminal to the Jarol Core.
In Figure 6.1 the TerminalThread is located near the bottom of the figure above the
Control Terminal. It interacts with the Jarol Core via the TerminalControllerPort,
ControllerTerminalPort and ControllerTerminalSignal.

Output ports: TerminalControllerPort
Input ports: ControllerTerminalPort
Signaling signals: -
Awaiting signals: ControllerTerminalSignal

The TerminalThread is triggered by the Jarol Core. The Jarol Messages from the
Jarol Core are converted into messages that can be interpreted by the Control Ter-
minal. When the application starts, the TerminalThread awaits the Jarol Core thus
entering a waiting state immediately. When triggered for the first time it establishes
a connection to the Control Terminal. If a connection is established, it reads the data
provided by the Jarol Core sending it to the Control Terminal. Then it reads the user
input (navigation data) from the Control Terminal converts it to a Jarol Message and
forwards it to the Jarol Core. Afterwards it awaits the next signal from the Jarol Core.

6.1.3 Jarol Core

The Jarol Core does the execution of the control code, to do this it requires sensor
and navigation data. The Jarol Core is a thread that reads from the SensorThread
and TerminalThread, writes to the ActuatorThread and TerminalThread. In Figure
6.1 the Jarol Core is located in the center. It interacts with all three threads from
the Jarol Adaptation Layer: SensorThread, ActuatorThread and TerminalThread via
various ports and signals.

Output ports: ControllerActuatorPort, ControllerTerminalPort
Input ports: SensorControllerPort, TerminalControllerPort
Signaling signals: ControllerActuatorSignal, ControllerTerminalSignal
Awaiting signals: SensorControllerSignal

The Jarol Core is triggered by the SensorThread. When the application starts, the
Jarol Core awaits the SensorThread thus entering a waiting state immediately. When
it is triggered it reads the sensor data from the SensorControllerPort and forwards this
information via the ControllerTerminalPort to the TerminalThread and signals it on
the ControllerTerminalSignal. Then it computes the motor information and forwards
it via the ControllerActuatorPort to the ActuatorThread and signals it with the Con-

Control 71 Bernhard Kast

Jarol - Java Control Infrastructure 6.2. THE JAROL LAUV

trollerActuatorSignal. Additionally the current helicopter state is evaluated and sent
to the TerminalThread including the actuation data via the ControllerTerminalPort.
Then it reads the navigation data from the TerminalControllerPort and awaits the
signal from the SensorThread.

6.2 The Jarol LAUV

In the Jarol LAUV we use the Jarol infrastructure to interface the control code for the
submarine of the Seascout project. The goal is to leave the Seascout software architec-
ture unchanged, except for the control code that we migrated from DUNE (C/C++)
into the Jarol Core (Java). Eduardo Marques did the conversion of the three controllers
(depth, heading, speed) written in C/C++ to Java.

We use the Neptus Seascout Terminal and DUNE that runs an environment simulator,
but without the control code for submarine. We use the message set provided by the
USTL, from which we generated Java classes that implement the MessageInterface.

6.2.1 Structure

As can be seen in Figure 6.2 the Jarol LAUV has two elements that represent the
external system (red). These are DUNE and the Neptus Seascout. DUNE is running
the simulator for the environment, whereas Neptus is a user terminal that displays
data and reads user commands for maneuvering the submarine.
The external system is connected to the Jarol Adaptation Layer and the Jarol Inter-
face Ring. We only need one thread in the Jarol Adaptation Layer, because the Jarol
Interface Ring is able to fulfill most of the work, due to the use of Jarol links that
provide conversion of the messages.

The data flow inside of Jarol is solely organized via ports, thus the different threads
and links exchange data via the ports. The control flow is made explicit with signals.
Signals are used for thread synchronization, we also use signals to synchronize with
the links that use internal threads.

In this approach we used Jarol links, this allowed us to reduce the number of threads
needed in the Jarol Adaptation Layer to one in contrast to three in the Jarol JAviator.
The links provide the message conversion and threads for non-blocking communica-
tion. Thus we have a thick Jarol Interface Ring (green) and a thin Jarol Adaptation
Layer (yellow) in contrast to the Jarol JAviator, as can be seen quite clear due to the
difference in the color representation in Figure 6.2 and Figure 6.1.

6.2.2 Messages

The Seascout project has a clearly defined message set. This message set is written in
XML, Eduardo Marques used an XLST generator to generate Jarol Messages with an

Control 72 Bernhard Kast

Jarol - Java Control Infrastructure 6.2. THE JAROL LAUV

according MessageFactory out of the definition file. The MessageFactory implements
the de-/serialization of these messages. This results in an implicit conversion of the
messages when the pass through the links into or out of Jarol.

DUNE

Neptus Seascout

SensorThread

Jarol Core

SensorControllerPort

SensorControllerSignalawait()

signal()

signal()

await()

signal()

signal()

VehicleLink

TerminalLink

Figure 6.2: Jarol LAUV

6.2.3 Jarol Adaptation Layer

In contrast to the Jarol JAviator implementation the Jarol Adaptation Layer (yellow)
in this project is thin. It consists of only one thread. This is due to the use of links
that reside inside the Jarol Interface Ring and provide facilities to interface between
the external system, the Jarol Adaptation Layer and the Jarol Core. This can seen
in Figure 6.2. Notice the difference in comparison with the Figure 6.1 from the Jarol
JAviator .

Control 73 Bernhard Kast

Jarol - Java Control Infrastructure 6.2. THE JAROL LAUV

In this layer the translation of the Seascout protocol to an explicit data and control
flow is performed. This means the Seascout messages are converted into Jarol Messages
(data flow) and signals are emitted on Seascout messages that contain synchronization
information (control flow).

SensorThread

The SensorThread reads messages from DUNE via the VehicleLink that provides a
port. In Figure 6.2 the SensorThread is located on the left side of the figure. It inter-
acts with the Jarol Core via the SensorControllerPort and SensorControllerSignal.

Output ports: SensorControllerPort
Input ports: One in the VehicleLink
Signaling signals: SensorControllerSignal
Awaiting signals: -

The SensorThread is time-triggered by a TimeTrigger that sends a tick every 20 ms.
The messages from the VehicleLink are read and converted into Jarol Messages and
written to the SensorControllerPort that is read by the Jarol Core. When the input
port of the VehicleLink is read completely - means it is empty - by the SensorThread
the Jarol Core is signaled via the SensorControllerSignal. After the signaling the Core
the Sensor Threads awaits the next timed signal from the TimeTrigger.

6.2.4 Jarol Core

The main task of the Jarol Core is the computation of the control data to maneuver the
submarine. The Jarol Core (blue) interacts with the SensorThread, the VehicleLink
and the TerminalLink. In Figure 6.2 the Jarol Core is located in the center of the figure.

Output ports: One in TerminalLink, one in VehicleLink
Input ports: SensorControllerPort, one in TerminalLink
Signaling signals: One in TerminalLink, one in VehicleLink
Awaiting signals: SensorControllerSignal

The Jarol Core is triggered by the SensorThread. When the application starts the
Jarol Core awaits the SensorThread. The messages from the SensorThread and the
TerminalLink are used to compute the actuation data. Due to the use of links there is
only the SensorThread necessary to communicate with the external system.

Control 74 Bernhard Kast

Jarol - Java Control Infrastructure 6.3. THE EXOLAUV

6.3 The ExoLAUV

The ExoLAUV is the attempt to use Jarol for interfacing the LAUV platform and the
Exotask concurrency model. The corresponding Exotask graph can be seen in Figure
3.1. This application shows the flexibility of the infrastructure in regards to the con-
currency models.

The setup is as follows, DUNE contains the simulator for the LAUV and executes the
control code. The Neptus terminal is displaying the sensor data and reading user input
for controlling the submarine. Between DUNE and Neptus is the Exotask graph that
transfers the data between the two entities. The challenge with this setup is to bring
data from outside the Exotask graph into it and transfer the data from the inside of the
Exotask graph to the outside again. The purpose of Jarol is to interface the platform
and the concurrency models.

Note that Eduardo Marques has implemented a similar program that implements the
control code in an Exotask system. Since his implementation was finished a few days
before the submission of this thesis and the fact that we showed that interfacing Jarol
and Exotasks can be done, we do not include a discussion of this implementation.

6.3.1 Structure

The ExoLAUV uses two Jarol links to communicate with the external system, since
every link has two Jarol ports, these links provide four Jarol ports in total. We use
the Jarol ports to transfer the data from the external system to the Exotasks and
from the Exotasks to the external system. As connection points we use four Exotasks
communicators: fromDune, fromNeptus, toNeptus, toDune as can be seen in Figure
3.1.

These communicators are connected with the ExoLAUVController, which is a compute
task. In this case, it just forwards the data received from the input communicators
to the output communicators. This is sufficient since the challenge is to pass data
through the Exotasks.

In Figure 6.3 we can see the composition of Jarol with an Exotask graph, the Exotask
graph is the same as in Figure 3.1. The white boxes are the communicators and the
blue box (Jarol Core) is the compute task. The DuneLink and NeptusLink are con-
nected to the external system - not shown in the figure. The links are connected with
the distributer that transfers the data from the outside of the Exotask graph to the in-
side. This distributer is necessary to ensure the isolation requirements of the Exotasks.

6.3.2 Jarol Distributer

Due to the isolation model of the Exotasks it is necessary to have a facility that in-
terfaces between the inside and outside of an Exotask graph. This facility is called

Control 75 Bernhard Kast

Jarol - Java Control Infrastructure 6.3. THE EXOLAUV

Distributer

NeptusLink DuneLink

fromNeptus

toNeptus

fromDune

toDune

ExoLAUVController

Figure 6.3: ExoLAUV

distributer and is used to extend the Exotask graph across machine boundaries, in this
case a virtual machine boundary.

Exotask distributers are still in a development stage, one of the first has been used in
the JAviator project. In the future there should be a generic distributer, but for this
application we only developed a functional prototype for a Jarol distributer.

The distributer is an Exotask that transfers all the inputs from the links to the com-
municators and transfers all the outputs of the communicators to the links again. Most
of the parts need to be implemented by the developer, but the structure and the use
of generic objects like Jarol ports suggest that we should be able to develop a generic
Exotask distributers in the near future.

6.3.3 Jarol Core - ExoLAUVController

The ExoLAUVController is a compute task where the control code of the ExoLAUV
would reside. Since the Exotask system is still in development and the distributer
system is also likely to change in the near future, we just implemented a simple version
that shows that we can get data from outside of the Exotask graph into the graph
and transfer the data back to the outside system. Note that the major obstacle is the
transfer of data from/into the Exotasks system not the execution of the control code.

The structure of the ExoLAUVController user code is as follows: first we read sensor
data from the fromDune communicator, then we forward this data to the toNeptus
communicator. Next we read navigation data from the fromNeptus communicator.

Control 76 Bernhard Kast

Jarol - Java Control Infrastructure 6.4. SUMMARY

We forward this data to the toDune communicator. This operation sequence will be
extended with the computation of actuation data. Thus we would forward actuation
data calculated from the ExoLAUVController with the navigation data from Neptus,
instead of doing this calculations inside of Dune.

6.4 Summary

The different implementations of the heterogeneous system demonstrate the flexibility
of the Jarol infrastructure. The implementation of the Jarol JAviator makes apparent
that the structuring of the source code with abstract classes improves the readability
and the understanding of the source code. Due to the use of ports and signals the
information flows are now made explicit at the interfaces making it easier to maintain
the source code and the whole design.

The Jarol LAUV is a different case where we do not use the source code1 of the existing
system which was implemented in C/C++. The large software architecture and the
tool chain are different from the Jarol JAviator project, nevertheless we could apply
Jarol with this system. Sometimes it was even easier to apply Jarol since the bound-
aries are much clearer.

In the ExoLAUV project we demonstrate that the Jarol Core of the Jarol LAUV can
be implemented with a different concurrency system without major changes to the
Jarol Interface Ring.

1Except for the extraction of the control code to convert it to Java.

Control 77 Bernhard Kast

Chapter 7

Conclusions

We have presented the Jarol control infrastructure that allows the developer to focus
on the implementation of control code. Jarol provides a platform and concurrency
interface that enables abstraction of hardware details and allows the use of different
language-supported concurrency models. Implemented entirely in Java, the application
writer can rely on strong typing, language-based concurrency support, and dynamic
memory management using Jarol. We have implemented Jarol applications with inter-
faces to Java threads and Exotasks. This shows that Jarol can be used with different
concurrency models for execution of control code.

We begun the research with the evaluation of the JAviator and Seascout platforms.
During this process we encountered the problem of how to interact with two such
heterogeneous systems. To cope with this problem we proposed a platform interface
that allows the communication with both platforms. The hybrid control code of the
JAviator made obvious that the parallel use of control code by Java threads and the
Exotasks creates a hard-to-maintain source code. We were interested to support both
concurrency models with Jarol for execution of control code. Hence we analyzed the
characteristics of both concurrency models and derived the requirements for a general
concurrency interface.

Based on this analysis, we concluded that we need to elaborate the data and control
flow at the interfaces. We proceeded to their design and implementation in Java. We
designed ports that provide non-blocking and lock-free message passing for commu-
nication. For the control flow we designed signals that allow the implementation of
synchronization protocols for threads.

The successful interfacing of the JAviator and Seascout platform with the Jarol in-
trastructure shows its feasibility for control systems:

• The Jarol-based interface of the JAviator inherits the same functionality as the
original, but with increased code structuring, and thus, maintainability.

• The organization of the Seascout with Jarol shows that the migration of software
platforms that reside outside the Java realm is feasible.

• The interfacing of the Seascout with Exotasks and Jarol shows the feasibility of

78

Jarol - Java Control Infrastructure

the Jarol concurrency interface. Additionally, this approach had impact on the
ongoing development of the Exotask system, in particular on the development of
generic distributers.

Control 79 Bernhard Kast

Bibliography

[1] Brushless Motors - General Purpose DC Motors. http://www.mclennan.co.uk/product/generalpurposedcmotors.html.

[2] Description of BLDC 58. http://whale.fe.up.pt/ rmartins/BLDC58-50LMK2.pdf.

[3] Description of the Glomo SW100. http://www.glomo.dk/prodn4.htm.

[4] Devantech Homepage - Ultrasonic Sensors Page. http://www.robot-electronics.co.uk/shop/Ultrasonic Rangers1999.htm.

[5] GumstixDocsWiki - Robostix. http://docwiki.gumstix.org/Robostix.

[6] GumstixDocsWiki- Basix and connex. http://docwiki.gumstix.org/Basix and connex.

[7] Homepage - Computational Systems Group. http://cs.uni-salzburg.at/ ck/group/.

[8] Homepage - Underwater Systems and Technology Laboratory. http://whale.fe.up.pt/ lsts/wiki/index.php/Main Page.

[9] IBM Research Metronome Project. http://www.research.ibm.com/metronome/.

[10] Introduction to Pulse Width Modulation. http://www.netrino.com/Publications/Glossary/PWM.php.

[11] Java API 2 Platform Standard Ed. 5.0. http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.html.

[12] LAUV Homepage. http://whale.fe.up.pt/seascout/.

[13] Microstain - 3DM-GX1 Product Page. http://www.microstrain.com/3dm-gx1.aspx.

[14] Wikipedia - Autonomous Underwater Vehicle. http://en.wikipedia.org/wiki/Autonomous Underwater Vehicle.

[15] Wikipedia - Fin. http://en.wikipedia.org/wiki/Fin.

[16] Wikipedia - Gyroscope. http://en.wikipedia.org/wiki/Gyroscope.

[17] Wikipedia - I2C. http://en.wikipedia.org/wiki/I2C.

[18] Wikipedia - Inertial Measurement Unit. http://en.wikipedia.org/wiki/Inertial Measurement Unit.

[19] Wikipedia - Quadrotor. http://en.wikipedia.org/wiki/Quadrotor.

[20] Wikipedia - Unmanned Aerial Vehicle. http://en.wikipedia.org/wiki/Unmanned aerial vehicle.

[21] Operations with multiple autonomous underwater vehicles: the PISCIS project, 2003.

[22] Neptus - A Framework to support the Mission Life Cycle, 2006.

[23] Seaware: a publish/subscribe based middleware for networked vehicle systems, 7th IFAC Conference on Manoeu-
vring and Control of Marine Craft, September 2006.

[24] SWORDFISH: An Autonomous Surface Vehicle for Network Centric Operations, 2007. to appear in Oceans’07
Europe, Abeerdeen, Scotland, June 2007.

[25] Modeling and Simulation of the LAUV Autonomous Underwater Vehicle, in submission 2007.

[26] Ken Arnold, James Gosling, and David Holmes. THE Java Programming Language, Fourth Edition. Addison
Wesley Professional, 2005.

80

Jarol - Java Control Infrastructure BIBLIOGRAPHY

[27] J. Auerbach, D.F. Bacon, D.T. Iercan, C.M. Kirsch, V.T. Rajan, H. Röck, and R. Trummer. Java takes flight:
Time-portable real-time programming with exotasks. In Proc. ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES). ACM Press, 2007.

[28] D.F. Bacon, P. Cheng, D. Grove, M. Hind, V.T. Rajan, E. Yahav, M. Hauswirth, C.M. Kirsch, D. Spoonhauer, and
M.T. Vechev. High-level real-time programming in Java. In Proc. ACM International Conference on Embedded
Software (EMSOFT). ACM Press, 2005.

[29] Lubomir F. Bic and Alan C. Shaw. Operating Systems Principles. Prentice Hall, 2003.

[30] A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages. Addison Wesley, 3rd edition,
2001.

[31] Reza Ghabcheloo. Coordinated Path Following Control of Autonomous Vehicles (Thesis Summary). PhD thesis,
Lisbon, IST, November 2006.

[32] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language Specification - Third Edition. Java
Series. ADDISON-WESLEY, 2005.

[33] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: A time-triggered language for embedded programming. In
Proc. International Workshop on Embedded Software (EMSOFT), volume 2211 of LNCS, pages 166–184. Springer,
2001.

[34] Allen I. Holub. Taming Java Threads. Apress, 2000.

[35] K.H. (Kane) Kim. A non-blocking buffer mechanism for real-time event message communication. In Real-Time
Systems - The International Journal of Time-Critical Computing Systems, volume 32, pages 197–211, March
2006.

[36] Hermann Kopetz and Johannes Reisinger. NBW: A Non-Blocking Write Protocol for Task Communication in
Real-Time Systems. Jan. 1993.

[37] Doug Lea. Concurrent Programming in Java: Design Principles and Pattern Second Edition. The Java Series.
Prentice Hall, 2nd edition, 1999.

[38] William Pugh, Doug Lea, and Sarita Adve. JSR-133: JAVA Memory Model and Thread Specification.

[39] Rainer Trummer. JAviator Homepage. http://javiator.cs.uni-salzburg.at/.

[40] Bill Venners. Inside the Java Virtual Machine. McGraw-Hill Companies, 2000.

Control 81 Bernhard Kast

